svm的使用细节
发布日期:2021-05-06 21:45:36 浏览次数:24 分类:精选文章

本文共 1805 字,大约阅读时间需要 6 分钟。

1、当训练的代码是clf = SVC(probability=False),那么predict_proba函数不可用的;提示如下:AttributeError: predict_proba is not available when  probability=False;

参数解释:probability 

布尔类型,可选,默认为False 
决定是否启用概率估计。需要在训练fit()模型时加上这个参数,之后才能用相关的方法:predict_proba和predict_log_proba

2、可以使用scores函数获得得分,得分为准确率;

#coding=utf-8

import pandas as pd
import xlrd
import os
import matplotlib.pyplot as plt
import numpy as np
from sklearn.svm import SVC
X = np.array([[-1,-1],[-2,-1],[1,1],[2,1],[-1,1],[-1,2],[1,-1],[1,-2]])
y = np.array([0,0,1,1,2,2,3,3])
# y=np.array([1,1,2,2,3,3,4,4])
# clf = SVC(decision_function_shape="ovr",probability=True)
clf = SVC(probability=True)
#clf = SVC(probability=False)
clf.fit(X, y)
print(clf.decision_function(X))
'''
对于n分类,会有n个分类器,然后,任意两个分类器都可以算出一个分类界面,这样,用decision_function()时,对于任意一个样例,就会有n*(n-1)/2个值。
任意两个分类器可以算出一个分类界面,然后这个值就是距离分类界面的距离。
我想,这个函数是为了统计画图,对于二分类时最明显,用来统计每个点离超平面有多远,为了在空间中直观的表示数据以及画超平面还有间隔平面等。
decision_function_shape="ovr"时是4个值,为ovo时是6个值。
'''
print(clf.predict(X))
print(clf.predict_proba(X)) #这个是得分,每个分类器的得分,取最大得分对应的类。
print(clf.score(X,y))
#画图
plot_step=0.02
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, plot_step),
                     np.arange(y_min, y_max, plot_step))
Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) #对坐标风格上的点进行预测,来画分界面。其实最终看到的类的分界线就是分界面的边界线。
Z = Z.reshape(xx.shape)
cs = plt.contourf(xx, yy, Z, cmap=plt.cm.Paired)
plt.axis("tight")
class_names="ABCD"
plot_colors="rybg"
for i, n, c in zip(range(4), class_names, plot_colors):
    idx = np.where(y == i) #i为0或者1,两个类
    plt.scatter(X[idx, 0], X[idx, 1],
                c=c, cmap=plt.cm.Paired,
                label="Class %s" % n)
plt.xlim(x_min, x_max)
plt.ylim(y_min, y_max)
plt.legend(loc='upper right')
plt.xlabel('x')
plt.ylabel('y')
plt.title('Decision Boundary')
plt.show()

上一篇:logic回归是一种线性回归
下一篇:logic多分类的两种类别

发表评论

最新留言

网站不错 人气很旺了 加油
[***.192.178.218]2025年04月14日 18时22分37秒