leetcode 459. Repeated Substring Pattern
发布日期:2025-04-04 23:43:45 浏览次数:17 分类:精选文章

本文共 1859 字,大约阅读时间需要 6 分钟。

Given a non-empty string check if it can be constructed by taking a substring of it and appending multiple copies of the substring together. You may assume the given string consists of lowercase English letters only and its length will not exceed 10000.

Example 1:

Input: "abab"Output: TrueExplanation: It's the substring "ab" twice.

Example 2:

Input: "aba"Output: False

Example 3:

Input: "abcabcabcabc"Output: TrueExplanation: It's the substring "abc" four times. (And the substring "abcabc" twice.)
class Solution(object):    def repeatedSubstringPattern(self, s):        """        :type s: str        :rtype: bool        """        #return True if re.match(r"(\w+)*", s) else False        def is_repeat(s1, s2):                        return s1 == s2*(len(s1)/len(s2))                            l = len(s)        for i in xrange(1, l/2+1):            if l % i == 0:                if is_repeat(s, s[:i]):                    return True        return False

 上面是暴力解法,下面是技巧解法:

class Solution(object):    def repeatedSubstringPattern(self, s):        """        :type s: str        :rtype: bool        """        #return True if re.match(r"(\w+)*", s) else False        if not s:            return False                    ss = (s + s)[1:-1]        return ss.find(s) != -1

 解释:

Let's say T = S + S.

"S is Repeated => From T[1:-1] we can find S" is obvious.

If from T[1:-1] we found S at index p-1, which is index p in T and S.

let s1 = S[:p], S can be represented as s1s2...sn, where si stands for substring rather than character.
then we know T[p:len(S) + p] = s2s3...sn-1sns1 = S = s1s2...sn-2sn-1sn.
So s1 = s2, s2 = s3, ..., sn-1 = sn, sn = s1,Which means S is Repeated.

其实你自己画图下就知道了!!!假设:

s=s1s2s3s4

T=s1s2s3s4s1s2s3s4

去掉收尾,则有:T'=s2s3s4s1s2s3,如果在这里面找到了s1s2s3s4,假设找到的为0位置则:

s2s3s4s1=s1s2s3s4,说明:s2==s1,s3==s2,s4==s3,s1==s4,不就是单个字符重复了嘛!同样,假设出现的位置为1,也可以类似推导!

 

上一篇:LeetCode 628. 三个数的最大乘积 java版
下一篇:leetcode 447. 回旋镖的数量(Number of Boomerangs)

发表评论

最新留言

很好
[***.229.124.182]2025年04月17日 18时13分08秒