win 10 系统下利用tensorflow+python实现花朵识别——CNN模型
发布日期:2021-05-14 10:19:16 浏览次数:25 分类:精选文章

本文共 12508 字,大约阅读时间需要 41 分钟。

windows系统下利用tensorflow+python实现花朵识别

本文主要通过CNN进行花卉的分类,训练结束保存模型,最后通过调用模型,输入花卉的图片通过模型来进行类别的预测。

目的:识别不同的花朵

环境:win10 +TensorFlow 1.12.0+pycharm
数据集:

在这里插入图片描述

一、环境的搭建

首先肯定是要搭建tensorflow和python的环境了,可以参考我之前的博客: 和 其他环境也可以百度。

二、下载花朵图片数据集

下载地址:

现在我们要训练花朵的识别模型,这是 Google 在TensorFlow里面提供的一个例子,其中包含了5类花朵的训练图片。可以新建个文件夹,用于存放数据和训练的模型。
如下图:flower_photos,用于放置训练图片
flower_model用于放置产生的模型,具体程序里有路径,灵活应用。
在这里插入图片描述

三、训练模型

我用的pycharm编译的程序,新建一个py文件

代码如下,复制进去

#程序功能:用tensorflow训练5种花朵的模型#作者:Mao#时间:2018.12.6#参考博文#作者:Enchanted_ZhouH#来源:CSDN#原文:https://blog.csdn.net/Enchanted_ZhouH/article/details/74116823import osos.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'from skimage import io,transformimport globimport osimport tensorflow as tfimport numpy as npimport time#数据集地址path=      'E:/TensorFlow_project/18_12_5_flower/flower_photos/'#模型保存地址model_path='E:/TensorFlow_project/18_12_5_flower/flower_model/model.ckpt'#将所有的图片resize成100*100w=100h=100c=3#读取图片def read_img(path):    cate=[path+x for x in os.listdir(path) if os.path.isdir(path+x)]    imgs=[]    labels=[]    for idx,folder in enumerate(cate):        for im in glob.glob(folder+'/*.jpg'):            print('reading the images:%s'%(im))            img=io.imread(im)            img=transform.resize(img,(w,h))            imgs.append(img)            labels.append(idx)    return np.asarray(imgs,np.float32),np.asarray(labels,np.int32)data,label=read_img(path)#打乱顺序num_example=data.shape[0]arr=np.arange(num_example)np.random.shuffle(arr)data=data[arr]label=label[arr]#将所有数据分为训练集和验证集ratio=0.8s=np.int(num_example*ratio)x_train=data[:s]y_train=label[:s]x_val=data[s:]y_val=label[s:]#-----------------构建网络----------------------#占位符x=tf.placeholder(tf.float32,shape=[None,w,h,c],name='x')y_=tf.placeholder(tf.int32,shape=[None,],name='y_')def inference(input_tensor, train, regularizer):    with tf.variable_scope('layer1-conv1'):        conv1_weights = tf.get_variable("weight",[5,5,3,32],initializer=tf.truncated_normal_initializer(stddev=0.1))        conv1_biases = tf.get_variable("bias", [32], initializer=tf.constant_initializer(0.0))        conv1 = tf.nn.conv2d(input_tensor, conv1_weights, strides=[1, 1, 1, 1], padding='SAME')        relu1 = tf.nn.relu(tf.nn.bias_add(conv1, conv1_biases))    with tf.name_scope("layer2-pool1"):        pool1 = tf.nn.max_pool(relu1, ksize = [1,2,2,1],strides=[1,2,2,1],padding="VALID")    with tf.variable_scope("layer3-conv2"):        conv2_weights = tf.get_variable("weight",[5,5,32,64],initializer=tf.truncated_normal_initializer(stddev=0.1))        conv2_biases = tf.get_variable("bias", [64], initializer=tf.constant_initializer(0.0))        conv2 = tf.nn.conv2d(pool1, conv2_weights, strides=[1, 1, 1, 1], padding='SAME')        relu2 = tf.nn.relu(tf.nn.bias_add(conv2, conv2_biases))    with tf.name_scope("layer4-pool2"):        pool2 = tf.nn.max_pool(relu2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='VALID')    with tf.variable_scope("layer5-conv3"):        conv3_weights = tf.get_variable("weight",[3,3,64,128],initializer=tf.truncated_normal_initializer(stddev=0.1))        conv3_biases = tf.get_variable("bias", [128], initializer=tf.constant_initializer(0.0))        conv3 = tf.nn.conv2d(pool2, conv3_weights, strides=[1, 1, 1, 1], padding='SAME')        relu3 = tf.nn.relu(tf.nn.bias_add(conv3, conv3_biases))    with tf.name_scope("layer6-pool3"):        pool3 = tf.nn.max_pool(relu3, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='VALID')    with tf.variable_scope("layer7-conv4"):        conv4_weights = tf.get_variable("weight",[3,3,128,128],initializer=tf.truncated_normal_initializer(stddev=0.1))        conv4_biases = tf.get_variable("bias", [128], initializer=tf.constant_initializer(0.0))        conv4 = tf.nn.conv2d(pool3, conv4_weights, strides=[1, 1, 1, 1], padding='SAME')        relu4 = tf.nn.relu(tf.nn.bias_add(conv4, conv4_biases))    with tf.name_scope("layer8-pool4"):        pool4 = tf.nn.max_pool(relu4, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='VALID')        nodes = 6*6*128        reshaped = tf.reshape(pool4,[-1,nodes])    with tf.variable_scope('layer9-fc1'):        fc1_weights = tf.get_variable("weight", [nodes, 1024],                                      initializer=tf.truncated_normal_initializer(stddev=0.1))        if regularizer != None: tf.add_to_collection('losses', regularizer(fc1_weights))        fc1_biases = tf.get_variable("bias", [1024], initializer=tf.constant_initializer(0.1))        fc1 = tf.nn.relu(tf.matmul(reshaped, fc1_weights) + fc1_biases)        if train: fc1 = tf.nn.dropout(fc1, 0.5)    with tf.variable_scope('layer10-fc2'):        fc2_weights = tf.get_variable("weight", [1024, 512],                                      initializer=tf.truncated_normal_initializer(stddev=0.1))        if regularizer != None: tf.add_to_collection('losses', regularizer(fc2_weights))        fc2_biases = tf.get_variable("bias", [512], initializer=tf.constant_initializer(0.1))        fc2 = tf.nn.relu(tf.matmul(fc1, fc2_weights) + fc2_biases)        if train: fc2 = tf.nn.dropout(fc2, 0.5)    with tf.variable_scope('layer11-fc3'):        fc3_weights = tf.get_variable("weight", [512, 5],                                      initializer=tf.truncated_normal_initializer(stddev=0.1))        if regularizer != None: tf.add_to_collection('losses', regularizer(fc3_weights))        fc3_biases = tf.get_variable("bias", [5], initializer=tf.constant_initializer(0.1))        logit = tf.matmul(fc2, fc3_weights) + fc3_biases    return logit#---------------------------网络结束---------------------------regularizer = tf.contrib.layers.l2_regularizer(0.0001)logits = inference(x,False,regularizer)#(小处理)将logits乘以1赋值给logits_eval,定义name,方便在后续调用模型时通过tensor名字调用输出tensorb = tf.constant(value=1,dtype=tf.float32)logits_eval = tf.multiply(logits,b,name='logits_eval') loss=tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=y_)train_op=tf.train.AdamOptimizer(learning_rate=0.001).minimize(loss)correct_prediction = tf.equal(tf.cast(tf.argmax(logits,1),tf.int32), y_)    acc= tf.reduce_mean(tf.cast(correct_prediction, tf.float32))#定义一个函数,按批次取数据def minibatches(inputs=None, targets=None, batch_size=None, shuffle=False):    assert len(inputs) == len(targets)    if shuffle:        indices = np.arange(len(inputs))        np.random.shuffle(indices)    for start_idx in range(0, len(inputs) - batch_size + 1, batch_size):        if shuffle:            excerpt = indices[start_idx:start_idx + batch_size]        else:            excerpt = slice(start_idx, start_idx + batch_size)        yield inputs[excerpt], targets[excerpt]#训练和测试数据,可将n_epoch设置更大一些n_epoch=10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           batch_size=64saver=tf.train.Saver()sess=tf.Session()  sess.run(tf.global_variables_initializer())for epoch in range(n_epoch):    start_time = time.time()    #training    train_loss, train_acc, n_batch = 0, 0, 0    for x_train_a, y_train_a in minibatches(x_train, y_train, batch_size, shuffle=True):        _,err,ac=sess.run([train_op,loss,acc], feed_dict={x: x_train_a, y_: y_train_a})        train_loss += err; train_acc += ac; n_batch += 1    print("   train loss: %f" % (np.sum(train_loss)/ n_batch))    print("   train acc: %f" % (np.sum(train_acc)/ n_batch))    #validation    val_loss, val_acc, n_batch = 0, 0, 0    for x_val_a, y_val_a in minibatches(x_val, y_val, batch_size, shuffle=False):        err, ac = sess.run([loss,acc], feed_dict={x: x_val_a, y_: y_val_a})        val_loss += err; val_acc += ac; n_batch += 1    print("   validation loss: %f" % (np.sum(val_loss)/ n_batch))    print("   validation acc: %f" % (np.sum(val_acc)/ n_batch))saver.save(sess,model_path)sess.close()

运行这个py文件,会不断的读图,最后生成模型,运行图如下:

在这里插入图片描述

运行成功后的界面

在这里插入图片描述
并且在相应文件夹下生成模型文件
在这里插入图片描述

四、 调用模型,进行识别

代码如下:

#程序功能:用tensorflow训练5种花朵的模型后,调用模型,识别花朵#作者:mao#时间:2018.12.6#参考博文#作者:Enchanted_ZhouH#来源:CSDN#原文:https://blog.csdn.net/Enchanted_ZhouH/article/details/74116823import osos.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'from skimage import io,transformimport tensorflow as tfimport numpy as nppath1 = "E:/TensorFlow_project/18_12_5_flower/flower_photos/daisy/5547758_eea9edfd54_n.jpg"path2 = "E:/TensorFlow_project/18_12_5_flower/flower_photos/dandelion/7355522_b66e5d3078_m.jpg"path3 = "E:/TensorFlow_project/18_12_5_flower/flower_photos/roses/394990940_7af082cf8d_n.jpg"path4 = "E:/TensorFlow_project/18_12_5_flower/flower_photos/sunflowers/6953297_8576bf4ea3.jpg"path5 = "E:/TensorFlow_project/18_12_5_flower/flower_photos/tulips/10791227_7168491604.jpg"flower_dict = {0:'dasiy',1:'dandelion',2:'roses',3:'sunflowers',4:'tulips'}w=100h=100c=3def read_one_image(path):    img = io.imread(path)    img = transform.resize(img,(w,h))    return np.asarray(img)with tf.Session() as sess:    data = []    data1 = read_one_image(path1)    data2 = read_one_image(path2)    data3 = read_one_image(path3)    data4 = read_one_image(path4)    data5 = read_one_image(path5)    data.append(data1)    data.append(data2)    data.append(data3)    data.append(data4)    data.append(data5)    saver = tf.train.import_meta_graph('E:/TensorFlow_project/18_12_5_flower/flower_model/model.ckpt.meta')    saver.restore(sess,tf.train.latest_checkpoint('E:/TensorFlow_project/18_12_5_flower/flower_model/'))    graph = tf.get_default_graph()    x = graph.get_tensor_by_name("x:0")    feed_dict = {x:data}    logits = graph.get_tensor_by_name("logits_eval:0")    classification_result = sess.run(logits,feed_dict)    #打印出预测矩阵    print(classification_result)    #打印出预测矩阵每一行最大值的索引    print(tf.argmax(classification_result,1).eval())    #根据索引通过字典对应花的分类    output = []    output = tf.argmax(classification_result,1).eval()    for i in range(len(output)):        print("第",i+1,"朵花预测:"+flower_dict[output[i]])

运行结果

在这里插入图片描述
说明我们运行成功了,预测结果和调用模型代码中的五个路径相比较是完全准确的。
本文的模型对于花卉的分类准确率大概在70%左右,采用迁移学习调用Inception-v3模型对本文中的花卉数据集分类准确率在95%左右。主要的原因在于本文的CNN模型较于简单,而且花卉数据集本身就比mnist手写数字数据集分类难度就要大一点,同样的模型在mnist手写数字的识别上准确率要比花卉数据集准确率高不少。

本文的CNN模型完全可以通过增大模型复杂度或者改参数调试以及对图像进行预处理来提高准确率,

注意:一些图片读取或者模型保存及读取的路径要正确,需要在程序里修改一下。

参考:

TensorFlow之CNN图像分类及模型保存与调用:

上一篇:windows下查看已安装的tensorflow版本
下一篇:solidworks如何等比例放大缩小零件

发表评论

最新留言

做的很好,不错不错
[***.243.131.199]2025年05月03日 05时20分18秒

关于作者

    喝酒易醉,品茶养心,人生如梦,品茶悟道,何以解忧?唯有杜康!
-- 愿君每日到此一游!

推荐文章