python生成灰度图像,python-Tensorflow numpy图像重塑[灰度图像]
发布日期:2021-08-20 05:18:54 浏览次数:19 分类:技术文章

本文共 6408 字,大约阅读时间需要 21 分钟。

我正在尝试使用经过训练的神经网络数据在jupyter笔记本中执行Tensorflow“ object_detection_tutorial.py”,但它会引发ValueError.上面提到的文件是Sentdexs tensorflow教程的一部分,用于youtube上的对象检测.

我的图片尺寸:490×704.因此,这将导致344960阵列.

但它说:ValueError:无法将大小为344960的数组重塑为形状(490,704,3)

我究竟做错了什么?

码:

进口货

import numpy as np

import os

import six.moves.urllib as urllib

import sys

import tarfile

import tensorflow as tf

import zipfile

from collections import defaultdict

from io import StringIO

from matplotlib import pyplot as plt

from PIL import Image

环保设置

# This is needed to display the images.

%matplotlib inline

# This is needed since the notebook is stored in the object_detection folder.

sys.path.append("..")

对象检测导入

from utils import label_map_util

from utils import visualization_utils as vis_util

变数

# What model to download.

MODEL_NAME = 'shard_graph'

# Path to frozen detection graph. This is the actual model that is used for the object detection.

PATH_TO_CKPT = MODEL_NAME + '/frozen_inference_graph.pb'

# List of the strings that is used to add correct label for each box.

PATH_TO_LABELS = os.path.join('training', 'object-detection.pbtxt')

NUM_CLASSES = 90

将一个(冻结的)Tensorflow模型加载到内存中.

detection_graph = tf.Graph()

with detection_graph.as_default():

od_graph_def = tf.GraphDef()

with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:

serialized_graph = fid.read()

od_graph_def.ParseFromString(serialized_graph)

tf.import_graph_def(od_graph_def, name='')

加载标签图

label_map = label_map_util.load_labelmap(PATH_TO_LABELS)

categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True)

category_index = label_map_util.create_category_index(categories)

辅助程式码

def load_image_into_numpy_array(image):

(im_width, im_height) = image.size

return np.array(image.getdata()).reshape(

(im_height, im_width, 3)).astype(np.uint8)

侦测

# For the sake of simplicity we will use only 2 images:

# image1.jpg

# image2.jpg

# If you want to test the code with your images, just add path to the images to the TEST_IMAGE_PATHS.

PATH_TO_TEST_IMAGES_DIR = 'test_images'

TEST_IMAGE_PATHS = [ os.path.join(PATH_TO_TEST_IMAGES_DIR, 'frame_{}.png'.format(i)) for i in range(0, 2) ]

# Size, in inches, of the output images.

IMAGE_SIZE = (12, 8)

with detection_graph.as_default():

with tf.Session(graph=detection_graph) as sess:

# Definite input and output Tensors for detection_graph

image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')

# Each box represents a part of the image where a particular object was detected.

detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0')

# Each score represent how level of confidence for each of the objects.

# Score is shown on the result image, together with the class label.

detection_scores = detection_graph.get_tensor_by_name('detection_scores:0')

detection_classes = detection_graph.get_tensor_by_name('detection_classes:0')

num_detections = detection_graph.get_tensor_by_name('num_detections:0')

for image_path in TEST_IMAGE_PATHS:

image = Image.open(image_path)

# the array based representation of the image will be used later in order to prepare the

# result image with boxes and labels on it.

image_np = load_image_into_numpy_array(image)

# Expand dimensions since the model expects images to have shape: [1, None, None, 3]

image_np_expanded = np.expand_dims(image_np, axis=0)

# Actual detection.

(boxes, scores, classes, num) = sess.run(

[detection_boxes, detection_scores, detection_classes, num_detections],

feed_dict={image_tensor: image_np_expanded})

# Visualization of the results of a detection.

vis_util.visualize_boxes_and_labels_on_image_array(

image_np,

np.squeeze(boxes),

np.squeeze(classes).astype(np.int32),

np.squeeze(scores),

category_index,

use_normalized_coordinates=True,

line_thickness=8)

plt.figure(figsize=IMAGE_SIZE)

plt.imshow(image_np)

脚本的最后一部分抛出错误:

----------------------------------------------------------------------

ValueError Traceback (most recent call last)

in ()

14 # the array based representation of the image will be used later in order to prepare the

15 # result image with boxes and labels on it.

---> 16 image_np = load_image_into_numpy_array(image)

17 # Expand dimensions since the model expects images to have shape: [1, None, None, 3]

18 image_np_expanded = np.expand_dims(image_np, axis=0)

in load_image_into_numpy_array(image)

2 (im_width, im_height) = image.size

3 return np.array(image.getdata()).reshape(

----> 4 (im_height, im_width, 3)).astype(np.uint8)

ValueError: cannot reshape array of size 344960 into shape (490,704,3)

编辑:

因此,我更改了此函数的最后一行:

def load_image_into_numpy_array(image):

(im_width, im_height) = image.size

return np.array(image.getdata()).reshape(

(im_height, im_width, 3)).astype(np.uint8)

至:

(im_height, im_width)).astype(np.uint8)

并解决了ValueError.但是现在引发了另一个与数组格式有关的ValueError:

----------------------------------------------------------------------

ValueError Traceback (most recent call last)

in ()

20 (boxes, scores, classes, num) = sess.run(

21 [detection_boxes, detection_scores, detection_classes, num_detections],

---> 22 feed_dict={image_tensor: image_np_expanded})

23 # Visualization of the results of a detection.

24 vis_util.visualize_boxes_and_labels_on_image_array(

~/.local/lib/python3.6/site-packages/tensorflow/python/client/session.py in run(self, fetches, feed_dict, options, run_metadata)

898 try:

899 result = self._run(None, fetches, feed_dict, options_ptr,

--> 900 run_metadata_ptr)

901 if run_metadata:

902 proto_data = tf_session.TF_GetBuffer(run_metadata_ptr)

~/.local/lib/python3.6/site-packages/tensorflow/python/client/session.py in _run(self, handle, fetches, feed_dict, options, run_metadata)

1109 'which has shape %r' %

1110 (np_val.shape, subfeed_t.name,

-> 1111 str(subfeed_t.get_shape())))

1112 if not self.graph.is_feedable(subfeed_t):

1113 raise ValueError('Tensor %s may not be fed.' % subfeed_t)

ValueError: Cannot feed value of shape (1, 490, 704) for Tensor 'image_tensor:0', which has shape '(?, ?, ?, 3)'

这是否意味着该tensorflow模型不是为灰度图像设计的?有办法使它起作用吗?

多亏了Matan Hugi,它现在可以正常工作了.我要做的就是将此函数更改为:

def load_image_into_numpy_array(image):

# The function supports only grayscale images

last_axis = -1

dim_to_repeat = 2

repeats = 3

grscale_img_3dims = np.expand_dims(image, last_axis)

training_image = np.repeat(grscale_img_3dims, repeats, dim_to_repeat).astype('uint8')

assert len(training_image.shape) == 3

assert training_image.shape[-1] == 3

return training_image

转载地址:https://blog.csdn.net/weixin_33501587/article/details/116190540 如侵犯您的版权,请留言回复原文章的地址,我们会给您删除此文章,给您带来不便请您谅解!

上一篇:centos安装php_openssl,详解Linux(centos7)下安装OpenSSL安装图文方法
下一篇:fox li matlab,求翻译!这段话中文摘要利用FOX-LI数值迭代解法,对平面平行腔的柱面波进行数值求解.用Matlab软 件程序模拟出腔内...

发表评论

最新留言

不错!
[***.249.79.50]2022年07月25日 19时56分56秒