五、实例:在波士顿房价数据集上用随机森林回归填补缺失值
发布日期:2021-05-08 02:34:48 浏览次数:24 分类:原创文章

本文共 4415 字,大约阅读时间需要 14 分钟。



点击标题即可获取源代码和笔记



一、引入



我们从现实中收集的数据,几乎不可能是完美无缺的,往往都会有一些缺失值。面对缺失值,很多人选择的方式是直接将含有缺失值的样本删除,这是一种有效的方法,但是有时候填补缺失值会比直接丢弃样本效果更好,即便我们其实并不知道缺失值的真实样貌。在sklearn中,我们可以使用sklearn.impute.SimpleImputer来轻松地将均值,中值,或者其他最常用的数值填补到数据中。



二、目标


在这个案例中,我们将使用均值,0,和随机森林回归来填补缺失值,并验证四种状况下的拟合状况,找出对使用的数据集来说最佳的缺失值填补方法。


1. 导入需要的库


import numpy as npimport pandas as pdimport matplotlib.pyplot as pltfrom sklearn.datasets import load_bostonfrom sklearn.impute import SimpleImputerfrom sklearn.ensemble import RandomForestRegressorfrom sklearn.model_selection import cross_val_score

2. 以波士顿数据集为例,导入完整的数据集并探索


dataset = load_boston()dataset.data.shape#总共506*13=6578个数据X_full, y_full = dataset.data, dataset.targetn_samples = X_full.shape[0]n_features = X_full.shape[1]

3. 为完整数据集放入缺失值


#首先确定我们希望放入的缺失数据的比例,在这里我们假设是50%,那总共就要有3289个数据缺失rng = np.random.RandomState(0)missing_rate = 0.5n_missing_samples = int(np.floor(n_samples * n_features * missing_rate))#np.floor向下取整,返回.0格式的浮点数#所有数据要随机遍布在数据集的各行各列当中,而一个缺失的数据会需要一个行索引和一个列索引#如果能够创造一个数组,包含3289个分布在0~506中间的行索引,和3289个分布在0~13之间的列索引,那我们就可以利用索引来为数据中的任意3289个位置赋空值#然后我们用0,均值和随机森林来填写这些缺失值,然后查看回归的结果如何missing_features = rng.randint(0,n_features,n_missing_samples)missing_samples = rng.randint(0,n_samples,n_missing_samples)#missing_samples = rng.choice(dataset.data.shape[0],n_missing_samples,replace=False)#我们现在采样了3289个数据,远远超过我们的样本量506,所以我们使用随机抽取的函数randint。但如果我们#需要的数据量小于我们的样本量506,那我们可以采用np.random.choice来抽样,choice会随机抽取不重复的随机数,因此可以帮助我们让数据更加分散,确保数据不会集中在一些行中X_missing = X_full.copy()y_missing = y_full.copy()X_missing[missing_samples,missing_features] = np.nanX_missing = pd.DataFrame(X_missing) #转换成DataFrame是为了后续方便各种操作,numpy对矩阵的运算速度快到拯救人生,但是在索引等功能上却不如pandas来得好用

4. 使用0和均值填补缺失值


#使用均值进行填补from sklearn.impute import SimpleImputerimp_mean = SimpleImputer(missing_values=np.nan, strategy='mean')X_missing_mean = imp_mean.fit_transform(X_missing) #使用0进行填补imp_0 = SimpleImputer(missing_values=np.nan, strategy="constant",fill_value=0)X_missing_0 = imp_0.fit_transform(X_missing)

5. 使用随机森林填补缺失值


基本思想:



任何回归都是从特征矩阵中学习,然后求解连续型标签y的过程,之所以能够实现这个过程,是因为回归算法认为,特征矩阵和标签之前存在着某种联系。实际上,标签和特征是可以相互转换的,比如说,在一个“用地区,环境,附近学校数量”预测“房价”的问题中,我们既可以用“地区”,“环境”,“附近学校数量”的数据来预测“房价”,也可以反过来,用“环境”,“附近学校数量”和“房价”来预测“地区”。而回归填补缺失值,正是利用了这种思想。



对于一个有n个特征的数据来说,其中特征T有缺失值,我们就把特征T当作标签,其他的n-1个特征和原本的标签组成新的特征矩阵。那对于T来说,它没有缺失的部分,就是我们的Y_test,这部分数据既有标签也有特征,而它缺失的部分,只有特征没有标签,就是我们需要预测的部分。


1.特征T不缺失的值对应的其他n-1个特征 + 本来的标签:X_train
2.特征T不缺失的值:Y_train
3.特征T缺失的值对应的其他n-1个特征 + 本来的标签:X_test
4.特征T缺失的值:未知,我们需要预测的Y_test


这种做法,对于某一个特征大量缺失,其他特征却很完整的情况,非常适用。


那如果数据中除了特征T之外,其他特征也有缺失值怎么办?
答案是遍历所有的特征,从缺失最少的开始进行填补(因为填补缺失最少的特征所需要的准确信息最少)。填补一个特征时,先将其他特征的缺失值用0代替,每完成一次回归预测,就将预测值放到原本的特征矩阵中,再继续填补下一个特征。每一次填补完毕,有缺失值的特征会减少一个,所以每次循环后,需要用0来填补的特征就越来越少。当进行到最后一个特征时(这个特征应该是所有特征中缺失值最多的),已经没有任何的其他特征需要用0来进行填补了,而我们已经使用回归为其他特征填补了大量有效信息,可以用来填补缺失最多的特征。遍历所有的特征后,数据就完整,不再有缺失值了。


X_missing_reg = X_missing.copy()sortindex = np.argsort(X_missing_reg.isnull().sum(axis=0)).valuesfor i in sortindex:        #构建我们的新特征矩阵和新标签    df = X_missing_reg    fillc = df.iloc[:,i]    df = pd.concat([df.iloc[:,df.columns != i],pd.DataFrame(y_full)],axis=1)        #在新特征矩阵中,对含有缺失值的列,进行0的填补    df_0 =SimpleImputer(missing_values=np.nan,                        strategy='constant',fill_value=0).fit_transform(df)        #找出我们的训练集和测试集    Ytrain = fillc[fillc.notnull()]    Ytest = fillc[fillc.isnull()]    Xtrain = df_0[Ytrain.index,:]    Xtest = df_0[Ytest.index,:]        #用随机森林回归来填补缺失值     rfc = RandomForestRegressor(n_estimators=100)    rfc = rfc.fit(Xtrain, Ytrain)    Ypredict = rfc.predict(Xtest)        #将填补好的特征返回到我们的原始的特征矩阵中    X_missing_reg.loc[X_missing_reg.iloc[:,i].isnull(),i] = Ypredict

6. 对填补好的数据进行建模


#对所有数据进行建模,取得MSE结果X = [X_full,X_missing_mean,X_missing_0,X_missing_reg]mse = []std = []for x in X:    estimator = RandomForestRegressor(random_state=0, n_estimators=100)    scores = cross_val_score(estimator,x,y_full,scoring='neg_mean_squared_error', cv=5).mean()    mse.append(scores * -1)

7. 用所得结果画出条形图


x_labels = ['Full data',            'Zero Imputation',            'Mean Imputation',            'Regressor Imputation']colors = ['r', 'g', 'b', 'orange']plt.figure(figsize=(12, 6))ax = plt.subplot(111)for i in np.arange(len(mse)):    ax.barh(i, mse[i],color=colors[i], alpha=0.6, align='center')ax.set_title('Imputation Techniques with Boston Data')ax.set_xlim(left=np.min(mse) * 0.9,             right=np.max(mse) * 1.1)ax.set_yticks(np.arange(len(mse)))ax.set_xlabel('MSE')ax.set_yticklabels(x_labels)plt.show()

在这里插入图片描述

上一篇:LeetCode每日一题456. 132 模式 (单调栈)
下一篇:PAT L1-072. 刮刮彩票

发表评论

最新留言

留言是一种美德,欢迎回访!
[***.207.175.100]2025年03月24日 20时11分14秒