Algorithm: K-Means
发布日期:2021-05-07 23:34:41 浏览次数:26 分类:精选文章

本文共 3150 字,大约阅读时间需要 10 分钟。

K-Means????

K-Means ????

K-Means???????????????????????????????????????????????????????????????????????????????????????????

K-Means ?????

K-Means????????????????????

  • ???????????????????
  • ???????????????????????????????????????
  • ????????????????????????????
  • ?????????????????????????????????????????????
  • K-Means ?????

    K-Means???????????????

  • ??????????????????????????????
  • ?????????????????????????????
  • ???????CRM???????????????????????
  • K-Means ?????

    Python ??????

    # ??????
    from copy import deepcopy
    import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    # ????
    k = 3
    # ?????????
    X = np.random.random((200, 2)) * 10
    # ??????????
    C_x = np.random.choice(range(0, int(np.max(X[:, 0])), size=k, replace=False))
    C_y = np.random.choice(range(0, int(np.max(X[:, 1])), size=k, replace=False))
    C = np.array(list(zip(C_x, C_y)), dtype=np.float32)
    # ????????
    print("????????", C)
    # ????????????
    plt.scatter(X[:, 0], X[:, 1], c='#050505', s=7)
    plt.scatter(C[:, 0], C[:, 1], marker='*', s=300, c='g')
    plt.show()

    ??????

    # ?????
    C_old = np.zeros(C.shape)
    clusters = np.zeros(len(X))
    # ????????
    def dist(a, b, ax=1):
    return np.linalg.norm(a - b, axis=ax)
    # ???????????
    error = dist(C, C_old, None)
    while error != 0:
    # ???????
    for i in range(len(X)):
    distances = dist(X[i], C)
    clusters[i] = np.argmin(distances)
    # ????????
    C_old = deepcopy(C)
    # ??????
    for i in range(k):
    points = [X[j] for j in range(len(X)) if clusters[j] == i]
    C[i] = np.mean(points, axis=0)
    # ????
    error = dist(C, C_old, None)
    # ??????
    colors = ['r', 'g', 'b', 'y', 'c', 'm']
    fig, ax = plt.subplots()
    for i in range(k):
    points = np.array([X[j] for j in range(len(X)) if clusters[j] == i])
    ax.scatter(points[:, 0], points[:, 1], s=7, c=colors[i])
    ax.scatter(C[:, 0], C[:, 1], marker='*', s=200, c='#050505')
    plt.show()

    K-Means ?????

    1. ????

    K-Means??????????????????????????????????????????????

    2. ?????

    ??K-Means???????????????????????????????????????????????????????????????????????????????

    K-Means ????????

    1. K-Means vs Hard Clustering

    K-Means?????????????????????????????????????????Soft Clustering????GMM?????????????????????

    2. K-Means ????

  • ????????K-Means????????????????????????????
  • ??????K-Means?????????O(n^2k)?????????????????
  • K-Means ?????????

    ??????????????K-Means??????????????????????

  • ??????
    img = imread('Tulips.jpg')
    imshow(img)
    show()
  • ??K-Means??
    model = KMeans(n_clusters=3)
    labels = model.fit_predict(pixel)
  • ??????
    palette = model.cluster_centers
    for i in range(len(pixel)):
    pixel_new[i, :] = palette[labels[i]]
  • ????????
    imshow(pixel_new.reshape(img.shape[0], img.shape[1], 3))
    show()
  • K-Means ?????

  • ????????

    K-Means????????????????????????????????????????????

  • ??????

    ??????????????????????????????????????????????????????

  • ?????

    ?????????K-Means????????????????????????????????????????????

  • K-Means ??????

    ??K-Means?????????????????????????

  • ??????????????????????????
  • ????????????????K-Means??????????????????
  • ???????K-Means??????????????????????????
  • ??

    K-Means??????????????????????????????????????????????????????????????????K-Means?????????

    上一篇:基于K-Means算法的应用 User Clustering
    下一篇:在Markdown中的Latex 基本使用

    发表评论

    最新留言

    能坚持,总会有不一样的收获!
    [***.219.124.196]2025年04月26日 15时39分50秒