
Prime Ring Problem-dfs
发布日期:2021-05-07 07:25:06
浏览次数:15
分类:精选文章
本文共 1452 字,大约阅读时间需要 4 分钟。
#include#include #include int prime (int m) { for(int i=2; i<=sqrt(m); i++) if(m%i==0) return 0; return 1;}int book[1000],a[1000],n;//a[]存数据void bfs(int x) { int i,j,k,l; if(x==n+1&&prime(1+a[n])==1) { printf("1"); for(i=2; i<=n; i++) printf(" %d",a[i]); printf("\n"); } else { for(i=2; i<=n; i++) { if(book[i]==0&&prime(a[x-1]+i)==1) { a[x]=i; book[i]=1; bfs(x+1); book[i]=0; } } }}int main() { int c=1; while(~scanf("%d",&n)) { memset(book,0,sizeof(book)); memset(a,'\0',sizeof(a)); printf("Case %d:\n",c++); book[1]=1; a[1]=1; bfs(2); printf("\n"); }}
Problem Description
A ring is compose of n circles as shown in diagram. Put natural number
1, 2, …, n into each circle separately, and the sum of numbers in two adjacent circles should be a prime.Note: the number of first circle should always be 1.
Input
n (0 < n < 20).
Output
The output format is shown as sample below. Each row represents a
series of circle numbers in the ring beginning from 1 clockwisely and anticlockwisely. The order of numbers must satisfy the above requirements. Print solutions in lexicographical order.You are to write a program that completes above process.
Print a blank line after each case.
Sample Input
6 8Sample Output
Case 1: 1 4 3 2 5 6 1 6 5 2 3 4Case 2:
1 2 3 8 5 6 7 4 1 2 5 8 3 4 7 6 1 4 7 6 5 8 3 2 1 6 7 4 3 8 5 2Source
Asia 1996, Shanghai (Mainland China)发表评论
最新留言
表示我来过!
[***.240.166.169]2025年04月11日 08时01分29秒
关于作者

喝酒易醉,品茶养心,人生如梦,品茶悟道,何以解忧?唯有杜康!
-- 愿君每日到此一游!
推荐文章
Head First设计模式——迭代器模式
2019-03-06
Head First设计模式——中介者模式和备忘录模式
2019-03-06
MySQL数据库的两种连接方式:TCP/IP和Socket
2019-03-06
MongoDB版本及存储引擎区别
2019-03-06
shell echo单行和多行文字定向写入到文件中
2019-03-06
解析树状数组
2019-03-06
AtCoder Beginner Contest 100 题解
2019-03-06
【数据结构】可持久化线段树初步
2019-03-06
克拉默法则&矩阵分块:线性代数学习笔记2
2019-03-06
后缀树
2019-03-06
Java高性能编程之CAS与ABA及解决方法
2019-03-06
从BIO到Netty的演变
2019-03-06
《算法导论》第二章笔记
2019-03-06
HTML `capture` 属性
2019-03-06
CSS盒子模型
2019-03-06
HTML节点操作
2019-03-06
浏览器页面呈现过程
2019-03-06
HTML5新特性
2019-03-06
async/await剖析
2019-03-06
cmp命令
2019-03-06