HDU - 1069 Monkey and Banana(dp_LIS)
发布日期:2021-05-04 18:27:43 浏览次数:25 分类:技术文章

本文共 3628 字,大约阅读时间需要 12 分钟。

A group of researchers are designing an experiment to test the IQ of a monkey. They will hang a banana at the roof of a building, and at the mean time, provide the monkey with some blocks. If the monkey is clever enough, it shall be able to reach the banana by placing one block on the top another to build a tower and climb up to get its favorite food.

The researchers have n types of blocks, and an unlimited supply of blocks of each type. Each type-i block was a rectangular solid with linear dimensions (xi, yi, zi). A block could be reoriented so that any two of its three dimensions determined the dimensions of the base and the other dimension was the height.
They want to make sure that the tallest tower possible by stacking blocks can reach the roof. The problem is that, in building a tower, one block could only be placed on top of another block as long as the two base dimensions of the upper block were both strictly smaller than the corresponding base dimensions of the lower block because there has to be some space for the monkey to step on. This meant, for example, that blocks oriented to have equal-sized bases couldn't be stacked.
Your job is to write a program that determines the height of the tallest tower the monkey can build with a given set of blocks.

Input

The input file will contain one or more test cases. The first line of each test case contains an integer n,

representing the number of different blocks in the following data set. The maximum value for n is 30.
Each of the next n lines contains three integers representing the values xi, yi and zi.
Input is terminated by a value of zero (0) for n.

Output

For each test case, print one line containing the case number (they are numbered sequentially starting from 1) and the height of the tallest possible tower in the format "Case case: maximum height = height".

Sample Input

110 20 3026 8 105 5 571 1 12 2 23 3 34 4 45 5 56 6 67 7 7531 41 5926 53 5897 93 2384 62 6433 83 270

Sample Output

Case 1: maximum height = 40Case 2: maximum height = 21Case 3: maximum height = 28Case 4: maximum height = 342

题意:

每种类型的长方体有无数个,要求上面的长方体的长和宽都要严格小于下面长方体的长和宽

思路:

和普通LIS没什么两样,(这就是个LIS)

把每种长方体的6种状态都存下来就好了

#include 
using namespace std;typedef long long ll;const int mod = 1e9 +7;const int inf = 0x3f3f3f3f;const int N = 155;struct node{ int x, y, z;}s[N];bool cmp(node a, node b){ if(a.x != b.x) return a.x < b.x; if(a.y != b.y) return a.y < b.y; if(a.z != b.z) return a.z < b.z;}int dp[N];int main(){ int n, tot, a, b, c, kcase = 0; while(~scanf("%d", &n) && n) { tot = 0; for(int i = 1; i <= n; ++i) { scanf("%d%d%d", &a, &b, &c); s[++tot].x = a; s[tot].y = b; s[tot].z = c; s[++tot].x = a; s[tot].y = c; s[tot].z = b; s[++tot].x = b; s[tot].y = c; s[tot].z = a; s[++tot].x = b; s[tot].y = a; s[tot].z = c; s[++tot].x = c; s[tot].y = a; s[tot].z = b; s[++tot].x = c; s[tot].y = b; s[tot].z = a; } sort(s + 1, s + tot + 1, cmp); int maxx = 0; for(int i = 1; i <= tot; ++i) { dp[i] = s[i].z; for(int j = 1; j < i; ++j) { if(s[i].x > s[j].x && s[i].y > s[j].y) { dp[i] = max(dp[i], dp[j] + s[i].z); } } maxx = max(maxx, dp[i]); } cout<<"Case "<<++kcase<<": maximum height = "<
<<'\n'; } return 0;}

 

上一篇:HDU - 1176 免费馅饼(dp_数塔)
下一篇:HDU - 1024 Max Sum Plus Plus(dp_最大M字段和)

发表评论

最新留言

初次前来,多多关照!
[***.217.46.12]2025年03月16日 20时41分50秒