自然语言处理实例
发布日期:2021-07-01 02:13:12 浏览次数:2 分类:技术文章

本文共 12346 字,大约阅读时间需要 41 分钟。

自然语言处理实例

数据简介: Disasters on social media

社交媒体上有些讨论是关于灾难,疾病,暴乱的,有些只是开玩笑或者是电影情节,我们该如何让机器能分辨出这两种讨论呢?

在这里插入图片描述

import kerasimport nltkimport pandas as pdimport numpy as npimport reimport codecs

在这里插入图片描述

questions = pd.read_csv("socialmedia_relevant_cols_clean.csv")questions.columns=['text', 'choose_one', 'class_label']questions.head()
text choose_one class_label
0 Just happened a terrible car crash Relevant 1
1 Our Deeds are the Reason of this #earthquake M... Relevant 1
2 Heard about #earthquake is different cities, s... Relevant 1
3 there is a forest fire at spot pond, geese are... Relevant 1
4 Forest fire near La Ronge Sask. Canada Relevant 1
questions.describe()
class_label
count 10876.000000
mean 0.432604
std 0.498420
min 0.000000
25% 0.000000
50% 0.000000
75% 1.000000
max 2.000000

数据清洗,去掉无用字符

def standardize_text(df, text_field):    df[text_field] = df[text_field].str.replace(r"http\S+", "")    df[text_field] = df[text_field].str.replace(r"http", "")    df[text_field] = df[text_field].str.replace(r"@\S+", "")    df[text_field] = df[text_field].str.replace(r"[^A-Za-z0-9(),!?@\'\`\"\_\n]", " ")    df[text_field] = df[text_field].str.replace(r"@", "at")    df[text_field] = df[text_field].str.lower()    return dfquestions = standardize_text(questions, "text")questions.to_csv("clean_data.csv")questions.head()
text choose_one class_label
0 just happened a terrible car crash Relevant 1
1 our deeds are the reason of this earthquake m... Relevant 1
2 heard about earthquake is different cities, s... Relevant 1
3 there is a forest fire at spot pond, geese are... Relevant 1
4 forest fire near la ronge sask canada Relevant 1
clean_questions = pd.read_csv("clean_data.csv")clean_questions.tail()
Unnamed: 0 text choose_one class_label
10871 10871 m1 94 01 04 utc ?5km s of volcano hawaii Relevant 1
10872 10872 police investigating after an e bike collided ... Relevant 1
10873 10873 the latest more homes razed by northern calif... Relevant 1
10874 10874 meg issues hazardous weather outlook (hwo) Relevant 1
10875 10875 cityofcalgary has activated its municipal eme... Relevant 1

数据分布情况

数据是否倾斜

clean_questions.groupby("class_label").count()
Unnamed: 0 text choose_one
class_label
0 6187 6187 6187
1 4673 4673 4673
2 16 16 16

看起来还算均衡的

处理流程

  • 分词
  • 训练与测试集
  • 检查与验证
from nltk.tokenize import RegexpTokenizertokenizer = RegexpTokenizer(r'\w+')clean_questions["tokens"] = clean_questions["text"].apply(tokenizer.tokenize)clean_questions.head()
Unnamed: 0 text choose_one class_label tokens
0 0 just happened a terrible car crash Relevant 1 [just, happened, a, terrible, car, crash]
1 1 our deeds are the reason of this earthquake m... Relevant 1 [our, deeds, are, the, reason, of, this, earth...
2 2 heard about earthquake is different cities, s... Relevant 1 [heard, about, earthquake, is, different, citi...
3 3 there is a forest fire at spot pond, geese are... Relevant 1 [there, is, a, forest, fire, at, spot, pond, g...
4 4 forest fire near la ronge sask canada Relevant 1 [forest, fire, near, la, ronge, sask, canada]

语料库情况

from keras.preprocessing.text import Tokenizerfrom keras.preprocessing.sequence import pad_sequencesfrom keras.utils import to_categoricalall_words = [word for tokens in clean_questions["tokens"] for word in tokens]sentence_lengths = [len(tokens) for tokens in clean_questions["tokens"]]VOCAB = sorted(list(set(all_words)))print("%s words total, with a vocabulary size of %s" % (len(all_words), len(VOCAB)))print("Max sentence length is %s" % max(sentence_lengths))
154724 words total, with a vocabulary size of 18101Max sentence length is 34

句子长度情况

import matplotlib.pyplot as pltfig = plt.figure(figsize=(10, 10)) plt.xlabel('Sentence length')plt.ylabel('Number of sentences')plt.hist(sentence_lengths)plt.show()

在这里插入图片描述

特征如何构建?

Bag of Words Counts

from sklearn.model_selection import train_test_splitfrom sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizerdef cv(data):    count_vectorizer = CountVectorizer()    emb = count_vectorizer.fit_transform(data)    return emb, count_vectorizerlist_corpus = clean_questions["text"].tolist()list_labels = clean_questions["class_label"].tolist()X_train, X_test, y_train, y_test = train_test_split(list_corpus, list_labels, test_size=0.2,                                                                                 random_state=40)X_train_counts, count_vectorizer = cv(X_train)X_test_counts = count_vectorizer.transform(X_test)

PCA展示Bag of Words

from sklearn.decomposition import PCA, TruncatedSVDimport matplotlibimport matplotlib.patches as mpatchesdef plot_LSA(test_data, test_labels, savepath="PCA_demo.csv", plot=True):        lsa = TruncatedSVD(n_components=2)        lsa.fit(test_data)        lsa_scores = lsa.transform(test_data)        color_mapper = {
label:idx for idx,label in enumerate(set(test_labels))} color_column = [color_mapper[label] for label in test_labels] colors = ['orange','blue','blue'] if plot: plt.scatter(lsa_scores[:,0], lsa_scores[:,1], s=8, alpha=.8, c=test_labels, cmap=matplotlib.colors.ListedColormap(colors)) red_patch = mpatches.Patch(color='orange', label='Irrelevant') green_patch = mpatches.Patch(color='blue', label='Disaster') plt.legend(handles=[red_patch, green_patch], prop={
'size': 30})fig = plt.figure(figsize=(16, 16)) plot_LSA(X_train_counts, y_train)plt.show()

在这里插入图片描述

看起来并没有将这两类点区分开

逻辑回归看一下结果

from sklearn.linear_model import LogisticRegressionclf = LogisticRegression(C=30.0, class_weight='balanced', solver='newton-cg',                          multi_class='multinomial', n_jobs=-1, random_state=40)clf.fit(X_train_counts, y_train)y_predicted_counts = clf.predict(X_test_counts)

评估

from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score, classification_reportdef get_metrics(y_test, y_predicted):      # true positives / (true positives+false positives)    precision = precision_score(y_test, y_predicted, pos_label=None,                                    average='weighted')                 # true positives / (true positives + false negatives)    recall = recall_score(y_test, y_predicted, pos_label=None,                              average='weighted')        # harmonic mean of precision and recall    f1 = f1_score(y_test, y_predicted, pos_label=None, average='weighted')        # true positives + true negatives/ total    accuracy = accuracy_score(y_test, y_predicted)    return accuracy, precision, recall, f1accuracy, precision, recall, f1 = get_metrics(y_test, y_predicted_counts)print("accuracy = %.3f, precision = %.3f, recall = %.3f, f1 = %.3f" % (accuracy, precision, recall, f1))
accuracy = 0.754, precision = 0.752, recall = 0.754, f1 = 0.753

混淆矩阵检查

import numpy as npimport itertoolsfrom sklearn.metrics import confusion_matrixdef plot_confusion_matrix(cm, classes,                          normalize=False,                          title='Confusion matrix',                          cmap=plt.cm.winter):    if normalize:        cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]    plt.imshow(cm, interpolation='nearest', cmap=cmap)    plt.title(title, fontsize=30)    plt.colorbar()    tick_marks = np.arange(len(classes))    plt.xticks(tick_marks, classes, fontsize=20)    plt.yticks(tick_marks, classes, fontsize=20)        fmt = '.2f' if normalize else 'd'    thresh = cm.max() / 2.    for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):        plt.text(j, i, format(cm[i, j], fmt), horizontalalignment="center",                  color="white" if cm[i, j] < thresh else "black", fontsize=40)        plt.tight_layout()    plt.ylabel('True label', fontsize=30)    plt.xlabel('Predicted label', fontsize=30)    return plt
cm = confusion_matrix(y_test, y_predicted_counts)fig = plt.figure(figsize=(10, 10))plot = plot_confusion_matrix(cm, classes=['Irrelevant','Disaster','Unsure'], normalize=False, title='Confusion matrix')plt.show()print(cm)

在这里插入图片描述

[[970 251   3] [274 670   1] [  3   4   0]]

第三类咋没有一个呢。。。因为数据里面就没几个啊。。。

进一步检查模型的关注点

def get_most_important_features(vectorizer, model, n=5):    index_to_word = {
v:k for k,v in vectorizer.vocabulary_.items()} # loop for each class classes ={
} for class_index in range(model.coef_.shape[0]): word_importances = [(el, index_to_word[i]) for i,el in enumerate(model.coef_[class_index])] sorted_coeff = sorted(word_importances, key = lambda x : x[0], reverse=True) tops = sorted(sorted_coeff[:n], key = lambda x : x[0]) bottom = sorted_coeff[-n:] classes[class_index] = {
'tops':tops, 'bottom':bottom } return classesimportance = get_most_important_features(count_vectorizer, clf, 10)
def plot_important_words(top_scores, top_words, bottom_scores, bottom_words, name):    y_pos = np.arange(len(top_words))    top_pairs = [(a,b) for a,b in zip(top_words, top_scores)]    top_pairs = sorted(top_pairs, key=lambda x: x[1])        bottom_pairs = [(a,b) for a,b in zip(bottom_words, bottom_scores)]    bottom_pairs = sorted(bottom_pairs, key=lambda x: x[1], reverse=True)        top_words = [a[0] for a in top_pairs]    top_scores = [a[1] for a in top_pairs]        bottom_words = [a[0] for a in bottom_pairs]    bottom_scores = [a[1] for a in bottom_pairs]        fig = plt.figure(figsize=(10, 10))      plt.subplot(121)    plt.barh(y_pos,bottom_scores, align='center', alpha=0.5)    plt.title('Irrelevant', fontsize=20)    plt.yticks(y_pos, bottom_words, fontsize=14)    plt.suptitle('Key words', fontsize=16)    plt.xlabel('Importance', fontsize=20)        plt.subplot(122)    plt.barh(y_pos,top_scores, align='center', alpha=0.5)    plt.title('Disaster', fontsize=20)    plt.yticks(y_pos, top_words, fontsize=14)    plt.suptitle(name, fontsize=16)    plt.xlabel('Importance', fontsize=20)        plt.subplots_adjust(wspace=0.8)    plt.show()top_scores = [a[0] for a in importance[1]['tops']]top_words = [a[1] for a in importance[1]['tops']]bottom_scores = [a[0] for a in importance[1]['bottom']]bottom_words = [a[1] for a in importance[1]['bottom']]plot_important_words(top_scores, top_words, bottom_scores, bottom_words, "Most important words for relevance")

在这里插入图片描述

我们的模型找到了一些模式,但是看起来还不够好

TFIDF Bag of Words

这样我们就不均等对待每一个词了

def tfidf(data):    tfidf_vectorizer = TfidfVectorizer()    train = tfidf_vectorizer.fit_transform(data)    return train, tfidf_vectorizerX_train_tfidf, tfidf_vectorizer = tfidf(X_train)X_test_tfidf = tfidf_vectorizer.transform(X_test)
F:\anaconda\lib\site-packages\sklearn\feature_extraction\text.py:1089: FutureWarning: Conversion of the second argument of issubdtype from `float` to `np.floating` is deprecated. In future, it will be treated as `np.float64 == np.dtype(float).type`.  if hasattr(X, 'dtype') and np.issubdtype(X.dtype, np.float):
fig = plt.figure(figsize=(16, 16))          plot_LSA(X_train_tfidf, y_train)plt.show()

在这里插入图片描述

看起来好那么一丁丁丁丁点

clf_tfidf = LogisticRegression(C=30.0, class_weight='balanced', solver='newton-cg',                          multi_class='multinomial', n_jobs=-1, random_state=40)clf_tfidf.fit(X_train_tfidf, y_train)y_predicted_tfidf = clf_tfidf.predict(X_test_tfidf)
accuracy_tfidf, precision_tfidf, recall_tfidf, f1_tfidf = get_metrics(y_test, y_predicted_tfidf)print("accuracy = %.3f, precision = %.3f, recall = %.3f, f1 = %.3f" % (accuracy_tfidf, precision_tfidf,                                                                        recall_tfidf, f1_tfidf))
accuracy = 0.762, precision = 0.760, recall = 0.762, f1 = 0.761
cm2 = confusion_matrix(y_test, y_predicted_tfidf)fig = plt.figure(figsize=(10, 10))plot = plot_confusion_matrix(cm2, classes=['Irrelevant','Disaster','Unsure'], normalize=False, title='Confusion matrix')plt.show()print("TFIDF confusion matrix")print(cm2)print("BoW confusion matrix")print(cm)

在这里插入图片描述

TFIDF confusion matrix[[974 249   1] [261 684   0] [  3   4   0]]BoW confusion matrix[[970 251   3] [274 670   1] [  3   4   0]]

词语的解释

importance_tfidf = get_most_important_features(tfidf_vectorizer, clf_tfidf, 10)
top_scores = [a[0] for a in importance_tfidf[1]['tops']]top_words = [a[1] for a in importance_tfidf[1]['tops']]bottom_scores = [a[0] for a in importance_tfidf[1]['bottom']]bottom_words = [a[1] for a in importance_tfidf[1]['bottom']]plot_important_words(top_scores, top_words, bottom_scores, bottom_words, "Most important words for relevance")

在这里插入图片描述

这些词看起来比之前强一些了

转载地址:https://maoli.blog.csdn.net/article/details/89455723 如侵犯您的版权,请留言回复原文章的地址,我们会给您删除此文章,给您带来不便请您谅解!

上一篇:线性回归实例
下一篇:三十九、Scrapy-redis框架分布式部署

发表评论

最新留言

网站不错 人气很旺了 加油
[***.192.178.218]2024年04月23日 22时35分40秒