AcWing 878 线性同余方程
发布日期:2021-05-28 16:27:05 浏览次数:10 分类:技术文章

本文共 1099 字,大约阅读时间需要 3 分钟。

题目描述:

给定n组数据ai,bi,mi,对于每组数求出一个xi,使其满足ai∗xi≡bi(mod mi),如果无解则输出impossible。

输入格式

第一行包含整数n。接下来n行,每行包含一组数据ai,bi,mi。

输出格式

输出共n行,每组数据输出一个整数表示一个满足条件的xi,如果无解则输出impossible。

每组数据结果占一行,结果可能不唯一,输出任意一个满足条件的结果均可。

输出答案必须在int范围之内。

数据范围

1≤n≤10^5,1≤ai,bi,mi≤2∗10^9

输入样例:

22 3 64 3 5

输出样例:

impossible7

分析:

a∗x≡b(mod m)等价于ax - my' = b,令y = -y',得到ax + my = b,便可以使用扩展欧几里得算法进行求解了。当gcd(a,m) | b时,该线性同余方程有解,否则无解。我们只需先求解ax + my = gcd(a,m)的解,然后对系数x和y扩大b / gcd(a,m)倍即可得到方程ax + my = b的解了。

更一般的,ax+by =c的特解为x0,y0,d=gcd(a,b),则方程的通解为x = x0 + kb/d,y = y0 - ka/d。k为任意整数,这是因为想要在x中加上的参数乘上a后与另一项参数乘以b后抵消,即a(x+z1)+b(y-z2)=c,可以得到az1=bz2,z1,z2都为整数,且通解要尽可能涵盖更多的数,故z1,z2应该尽可能的小,最小整数解就是z1=b/d,z2=a/d。

#include 
typedef long long ll;using namespace std;int exgcd(int a,int b,int &x,int &y){ if(!b){ x = 1,y = 0; return a; } int d = exgcd(b,a % b,y,x); y -= a / b * x; return d;}int main(){ int n,a,b,m,x,y,d; scanf("%d",&n); while(n--){ scanf("%d%d%d",&a,&b,&m); d = exgcd(a,m,x,y); if(b % d) puts("impossible"); else printf("%d\n",(ll)x * b / d % m); } return 0;}

 

转载地址:https://blog.csdn.net/qq_30277239/article/details/103746323 如侵犯您的版权,请留言回复原文章的地址,我们会给您删除此文章,给您带来不便请您谅解!

上一篇:AcWing 204 表达整数的奇怪方式
下一篇:AcWing 877 扩展欧几里得算法

发表评论

最新留言

表示我来过!
[***.240.166.169]2024年02月15日 06时22分52秒