
本文共 7992 字,大约阅读时间需要 26 分钟。
本教程为单机版+伪分布式的Hadoop,安装过程写的有些简单,只作为笔记方便自己研究Hadoop用。
环境
操作系统 | Centos 6.5_64bit | |
本机名称 | hadoop001 | |
本机IP | 192.168.3.128 | |
JDK | jdk-8u40-linux-x64.rpm | |
Hadoop | 2.7.3 |
Hadoop 有两个主要版本,Hadoop 1.x.y 和 Hadoop 2.x.y 系列,比较老的教材上用的可能是 0.20 这样的版本。Hadoop 2.x 版本在不断更新,本教程均可适用。如果需安装 0.20,1.2.1这样的版本,本教程也可以作为参考,主要差别在于配置项,配置请参考官网教程或其他教程。
单机安装
一、创建Hadoop用户
为了方便之后的操作,不干扰其他用户,咱们先建一个单独的Hadoop用户并设置密码[root@localhost ~]# useradd -m hadoop -s /bin/bash
[root@localhost ~]# passwd hadoopChanging password for user hadoop.New password: BAD PASSWORD: it is based on a dictionary wordBAD PASSWORD: is too simpleRetype new password: passwd: all authentication tokens updated successfully.
//还要修改host文件[root@hadoop001 .ssh]# vim /etc/hosts192.168.3.128 hadoop001
二、创建SSH无密码登录
单节点、集群都需要用到SSH登录,方便无障碍登录和通讯。
[hadoop@hadoop001 .ssh]$ cd ~/.ssh/[hadoop@hadoop001 .ssh]$ ssh-keygen -t rsaGenerating public/private rsa key pair.Enter file in which to save the key (/home/hadoop/.ssh/id_rsa): // 回车Enter passphrase (empty for no passphrase): //回车Enter same passphrase again: Your identification has been saved in /home/hadoop/.ssh/id_rsa.Your public key has been saved in /home/hadoop/.ssh/id_rsa.pub.The key fingerprint is:97:75:b0:56:3b:57:8c:1f:b1:51:b6:d9:9f:77:f3:cf hadoop@hadoop001The key's randomart image is:+--[ RSA 2048]----+| . .=*|| +.+O|| + +=+|| + . o+|| S o o+|| . =|| .|| ..|| E|+-----------------+[hadoop@hadoop001 .ssh]$ cat ./id_rsa.pub >> ./authorized_keys[hadoop@hadoop001 .ssh]$ lltotal 12-rw-rw-r--. 1 hadoop hadoop 398 Mar 14 14:09 authorized_keys-rw-------. 1 hadoop hadoop 1675 Mar 14 14:09 id_rsa-rw-r--r--. 1 hadoop hadoop 398 Mar 14 14:09 id_rsa.pub[hadoop@hadoop001 .ssh]$ chmod 644 authorized_keys[hadoop@hadoop001 .ssh]$ ssh hadoop001Last login: Tue Mar 14 14:11:52 2017 from hadoop001
这样的话本机免密码登录已经配置成功了。
三、安装JDK
rpm -qa |grep java// 卸载所有出现的包 rpm -e --nodeps java-x.x.x-gcj-compat-x.x.x.x-40jpp.115// 执行jdk-8u40-linux-x64.rpm包,不用配环境变量,不过需要加JAVA_HOMEecho "JAVA_HOME"=/usr/java/latest/ >> /etc/environment
测试安装成功与否
[hadoop@hadoop001 soft]$ java -versionjava version "1.8.0_40"Java(TM) SE Runtime Environment (build 1.8.0_40-b25)Java HotSpot(TM) 64-Bit Server VM (build 25.40-b25, mixed mode)
四、安装Hadoop
//安装到opt目录下[root@hadoop001 soft]# tar -zxf hadoop-2.7.3.tar.gz -C /opt/
修改目录权限
[root@hadoop001 opt]# lltotal 20drwxr-xr-x. 9 root root 4096 Aug 17 2016 hadoop-2.7.3[root@hadoop001 opt]# chown -R hadoop:hadoop hadoop-2.7.3/[root@hadoop001 opt]# lltotal 20drwxr-xr-x. 9 hadoop hadoop 4096 Aug 17 2016 hadoop-2.7.3
添加环境变量
[hadoop@hadoop001 bin]$ vim ~/.bash_profile# hadoop HADOOP_HOME=/opt/hadoop-2.7.3PATH=$PATH:$HOME/bin:$HADOOP_HOME/bin:$HADOOP_HOME/sbinexport PATH
测试安装成功与否
[hadoop@hadoop001 bin]$ hadoopUsage: hadoop [--config confdir] [COMMAND | CLASSNAME] CLASSNAME run the class named CLASSNAME or where COMMAND is one of: fs run a generic filesystem user client version print the version jarrun a jar file note: please use "yarn jar" to launch YARN applications, not this command. checknative [-a|-h] check native hadoop and compression libraries availability distcp copy file or directories recursively archive -archiveName NAME -p * create a hadoop archive classpath prints the class path needed to get the credential interact with credential providers Hadoop jar and the required libraries daemonlog get/set the log level for each daemon trace view and modify Hadoop tracing settingsMost commands print help when invoked w/o parameters.
单词统计
创建输入文件夹input放输入文件
[root@hadoop001 /]# mkdir -p /data/input//创建测试文件word.txt[root@hadoop001 /]# vim word.txtHi, This is a test file.Hi, I love hadoop and love you .//授权[root@hadoop001 /]# chown hadoop:hadoop /data/input/word.txt//运行单词统计[hadoop@hadoop001 hadoop-2.7.3]$ hadoop jar /opt/hadoop-2.7.3/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.3.jar wordcount /data/input/word.txt /data/output///...中间日志省略17/03/14 15:22:44 INFO mapreduce.Job: Counters: 30 File System Counters FILE: Number of bytes read=592316 FILE: Number of bytes written=1165170 FILE: Number of read operations=0 FILE: Number of large read operations=0 FILE: Number of write operations=0 Map-Reduce Framework Map input records=3 Map output records=14 Map output bytes=114 Map output materialized bytes=127 Input split bytes=90 Combine input records=14 Combine output records=12 Reduce input groups=12 Reduce shuffle bytes=127 Reduce input records=12 Reduce output records=12 Spilled Records=24 Shuffled Maps =1 Failed Shuffles=0 Merged Map outputs=1 GC time elapsed (ms)=0 Total committed heap usage (bytes)=525336576 Shuffle Errors BAD_ID=0 CONNECTION=0 IO_ERROR=0 WRONG_LENGTH=0 WRONG_MAP=0 WRONG_REDUCE=0 File Input Format Counters Bytes Read=59 File Output Format Counters Bytes Written=85
执行成功,到output目录下看结果
[hadoop@hadoop001 output]$ vim part-r-00000
. 1Hi, 2I 1This 1a 1and 1file. 1hadoop 1is 1love 2test 1you 1
【至此单机安装完成】
伪分布式安装
Hadoop 可以在单节点上以伪分布式的方式运行,Hadoop 进程以分离的 Java 进程来运行,节点既作为 NameNode 也作为 DataNode,同时,读取的是 HDFS 中的文件。
Hadoop 的配置文件位于 /$HADOOP_HOME/etc/hadoop/ 中,伪分布式至少需要修改2个配置文件 core-site.xml 和 hdfs-site.xml 。
Hadoop的配置文件是 xml 格式,每个配置以声明 property 的 name 和 value 的方式来实现。
修改core-site.xml
hadoop.tmp.dir file:/opt/hadoop-2.7.3/tmp Abase for other temporary directories. fs.defaultFS hdfs://hadoop001:9000
修改hdfs-site.xml
dfs.replication 1 dfs.namenode.name.dir file:/data/dfs/name dfs.datanode.data.dir file:/data/dfs/data
伪分布式虽然只需要配置 fs.defaultFS 和 dfs.replication 就可以运行(官方教程如此),不过若没有配置 hadoop.tmp.dir 参数,则默认使用的临时目录为 /tmp/hadoo-hadoop,而这个目录在重启时有可能被系统清理掉,导致必须重新执行 format 才行。所以我们进行了设置,同时也指定 dfs.namenode.name.dir 和 dfs.datanode.data.dir,否则在接下来的步骤中可能会出错。
修改mapred-site.xml
文件默认不存在,只有一个模板,复制一份
[hadoop@hadoop001 hadoop]$ cp mared-site.xml.template mared-site.xml
configration下添加
mapreduce.framework.name yarn mapreduce.jobhistory.address master:10020 mapreduce.jobhistory.webapp.address master:19888
修改yarn-site.xml
yarn.nodemanager.aux-services mapreduce_shuffle yarn.nodemanager.aux-services.mapreduce.shuffle.class org.apache.hadoop.mapred.ShuffleHandler yarn.resourcemanager.address hadoop001:8032 yarn.resourcemanager.scheduler.address hadoop001:8030 yarn.resourcemanager.resource-tracker.address hadoop001:8035 yarn.resourcemanager.admin.address hadoop001:8033 yarn.resourcemanager.webapp.address hadoop001:8088
格式化namenode
[hadoop@hadoop001 hadoop]$ hdfs namenode –format
好,格式化后启动namenode和datanode的守护进程,发现报错
设置一下hadoop-env.sh文件,把${JAVA_HOME}替换成绝对路径
[hadoop@hadoop001 hadoop-2.7.3]$ vim etc/hadoop/hadoop-env.sh
export JAVA_HOME=/usr/java/jdk1.8.0_40/
重新启动start-dfs.sh + start-yarn.sh 或者 start-all.sh
守护进程已经成功启动了,证明配置伪分布式成功。
远程访问,发现无法访问,本地可以访问。
原因其实是修改了hadoop-env.sh 后没有重启格式化namenode,重新格式化后发现datanode启动不起来了。
最后,删除datanode数据文件下VERSION文件,格式化后重启就可以了。
发表评论
最新留言
关于作者
