项目实战从 0 到 1 学习之Flink (24)Flink将kafka的数据存到redis中
发布日期:2021-05-14 00:16:43 浏览次数:18 分类:博客文章

本文共 9553 字,大约阅读时间需要 31 分钟。

1、依赖

UTF-8
1.7.2
1.7.7
1.2.17
2.11.8
org.apache.flink
flink-java
${flink.version}
org.apache.flink
flink-streaming-java_2.11
${flink.version}
org.apache.flink
flink-scala_2.11
${flink.version}
org.apache.flink
flink-streaming-scala_2.11
${flink.version}
org.apache.bahir
flink-connector-redis_2.11
1.0
org.apache.flink
flink-connector-kafka-0.11_2.11
${flink.version}
org.apache.flink
flink-connector-filesystem_2.11
1.7.2
com.alibaba
fastjson
1.2.51
org.slf4j
slf4j-log4j12
${slf4j.version}
runtime
log4j
log4j
${log4j.version}
runtime
org.apache.kafka
kafka-clients
0.11.0.2

 

2、代码实现一:

//1.创建StreamExecutionEnvironmentval env=StreamExecutionEnvironment.getExecutionEnvironmentval props=new Properties()props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG,"CentOS:9092")props.put(ConsumerConfig.GROUP_ID_CONFIG,"g1")val kafkaConsumer=new FlinkKafkaConsumer("topic01",new SimpleStringSchema(),props)val redisConfig=new FlinkJedisPoolConfig.Builder().setHost("CentOS").setPort(6379).build()val redisSink= new RedisSink(redisConfig,new WordPairRedisMapper)//2.设置Sourceval lines:DataStream[String]=env.addSource[String](kafkaConsumer)lines.flatMap(_.split("\\s+")).map((_,1)).keyBy(0).sum(1).addSink(redisSink)//4.执行任务env.execute("wordcount")

 

package com.baizhi.demo03import org.apache.flink.streaming.connectors.redis.common.mapper.{RedisCommand, RedisCommandDescription, RedisMapper}class WordPairRedisMapper extends RedisMapper[(String,Int)]{  override def getCommandDescription: RedisCommandDescription = {    new RedisCommandDescription(RedisCommand.HSET,"clicks")  }  override def getKeyFromData(t: (String, Int)): String = {    t._1  }  override def getValueFromData(t: (String, Int)): String = {    t._2.toString  }}

 3、代码实现二:

package ryx;import com.alibaba.fastjson.JSONArray;import com.alibaba.fastjson.JSONObject;import org.apache.flink.api.common.serialization.SimpleStringSchema;import org.apache.flink.streaming.api.CheckpointingMode;import org.apache.flink.streaming.api.datastream.DataStream;import org.apache.flink.streaming.api.datastream.DataStreamSource;import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;import org.apache.flink.streaming.api.environment.CheckpointConfig;import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;import org.apache.flink.streaming.api.functions.co.CoFlatMapFunction;import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer011;import org.apache.flink.streaming.connectors.kafka.FlinkKafkaProducer011;import org.apache.flink.streaming.util.serialization.KeyedSerializationSchemaWrapper;import org.apache.flink.util.Collector;import org.slf4j.Logger;import org.slf4j.LoggerFactory;import ryx.source.MyRedisSource;import java.util.HashMap;import java.util.Properties;public class DataClean {    private static Logger logger= LoggerFactory.getLogger(DataClean.class);    public static void main(String[] args) throws Exception {        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();        //checkpoint配置        env.enableCheckpointing(60000);        env.getCheckpointConfig().setCheckpointingMode(CheckpointingMode.EXACTLY_ONCE);        env.getCheckpointConfig().setMinPauseBetweenCheckpoints(30000);        env.getCheckpointConfig().setCheckpointTimeout(10000);        env.getCheckpointConfig().setMaxConcurrentCheckpoints(1);        env.getCheckpointConfig().enableExternalizedCheckpoints(CheckpointConfig.ExternalizedCheckpointCleanup.RETAIN_ON_CANCELLATION);        //设置statebackend        //env.setStateBackend(new RocksDBStateBackend("hdfs://hadoop100:9000/flink/checkpoints",true));        String topicS="allData";        Properties prop = new Properties();        prop.setProperty("group.id", "cleanData");        prop.setProperty("bootstrap.servers","hadoop01:9092,hadoop02:9092,hadoop03:9092");        FlinkKafkaConsumer011
myConsumer = new FlinkKafkaConsumer011
(topicS, new SimpleStringSchema(), prop); //读取kafka中的数据 /** *{"dt":"2019-10-10 16:45:32","countryCode":"US","data":[{"type":"s5","score":0.5,"level":"B"},{"type":"s1","score":0.8,"level":"B"}]} *{"dt":"2019-10-10 16:45:34","countryCode":"HK","data":[{"type":"s5","score":0.5,"level":"A"},{"type":"s3","score":0.3,"level":"D"}]} *{"dt":"2019-10-10 16:45:36","countryCode":"KW","data":[{"type":"s1","score":0.1,"level":"B"},{"type":"s4","score":0.2,"level":"A"}]} *{"dt":"2019-10-10 16:45:38","countryCode":"HK","data":[{"type":"s2","score":0.2,"level":"A+"},{"type":"s3","score":0.1,"level":"C"}]} */ DataStreamSource
data = env.addSource(myConsumer); //这里是前面的博客的----flink从redis中获取数据作为source源 DataStreamSource
> mapData = env.addSource(new MyRedisSource()); DataStream
resData = data.connect(mapData).flatMap(new CoFlatMapFunction
, String>() { //存储国家和大区的映射关系 private HashMap
allMap = new HashMap
(); //flatMap1处理获取kafka中的数据 public void flatMap1(String value, Collector
out) throws Exception { JSONObject jsonObject = JSONObject.parseObject(value); String dt = jsonObject.getString("dt"); String area = jsonObject.getString("countryCode"); logger.info("获取的时间戳为:" + dt + "---获取的国家为: " + area); System.out.println("获取的时间戳为:" + dt + "---获取的国家为: " + area); //获取大区的 String ar = allMap.get(area); JSONArray jsonArr = jsonObject.getJSONArray("data"); logger.info("获取的json字符串的data大小为:" + jsonArr.size()+"ar:"+ar); for (int i = 0; i < jsonArr.size(); i++) { JSONObject jsonOb = jsonArr.getJSONObject(i); logger.info("获取的data的json数组的数据为" + jsonOb); jsonOb.put("area", ar); jsonOb.put("dt", dt); out.collect(jsonOb.toJSONString()); System.out.println("获取的Json字符串为:" + jsonOb.toJSONString()); } } //flatMap2处理获取redis中的数据 public void flatMap2(HashMap
value, Collector
out) throws Exception { this.allMap=value; } }); String outTopic="allDataClean"; Properties outProp = new Properties(); outProp.setProperty("bootstrap.servers","hadoop01:9092,hadoop02:9092,hadoop03:9092"); //设置事务超市时间 outProp.setProperty("transaction.timeout.ms",60000*15+""); FlinkKafkaProducer011
writeKafka = new FlinkKafkaProducer011
(outTopic, new KeyedSerializationSchemaWrapper
(new SimpleStringSchema()), outProp, FlinkKafkaProducer011.Semantic.EXACTLY_ONCE); resData.addSink(writeKafka); env.execute("DataCLean"); }}

结果:

key:AREA_USvalueUS
key:AREA_CTvalueTW,HK
key:AREA_ARvaluePK,KW,SA
key:AREA_INvalueIN
获取的时间戳为:2019-10-10 16:45:38—获取的国家为: HK
获取的Json字符串为:{“area”:“AREA_CT”,“dt”:“2019-10-10 16:45:38”,“score”:0.2,“level”:“A+”,“type”:“s2”}
获取的Json字符串为:{“area”:“AREA_CT”,“dt”:“2019-10-10 16:45:38”,“score”:0.1,“level”:“C”,“type”:“s3”}
获取的时间戳为:2019-10-10 16:45:40—获取的国家为: KW
获取的Json字符串为:{“area”:“AREA_AR”,“dt”:“2019-10-10 16:45:40”,“score”:0.2,“level”:“A+”,“type”:“s3”}
获取的Json字符串为:{“area”:“AREA_AR”,“dt”:“2019-10-10 16:45:40”,“score”:0.2,“level”:“A+”,“type”:“s5”}
获取的时间戳为:2019-10-10 16:45:42—获取的国家为: US
获取的Json字符串为:{“area”:“AREA_US”,“dt”:“2019-10-10 16:45:42”,“score”:0.2,“level”:“D”,“type”:“s3”}
获取的Json字符串为:{“area”:“AREA_US”,“dt”:“2019-10-10 16:45:42”,“score”:0.2,“level”:“C”,“type”:“s4”}
key:AREA_USvalueUS
key:AREA_CTvalueTW,HK
key:AREA_ARvaluePK,KW,SA
key:AREA_INvalueIN
获取的时间戳为:2019-10-10 16:45:44—获取的国家为: IN
获取的Json字符串为:{“area”:“AREA_IN”,“dt”:“2019-10-10 16:45:44”,“score”:0.2,“level”:“A”,“type”:“s1”}
获取的Json字符串为:{“area”:“AREA_IN”,“dt”:“2019-10-10 16:45:44”,“score”:0.2,“level”:“B”,“type”:“s1”}
获取的时间戳为:2019-10-10 16:45:46—获取的国家为: US
获取的Json字符串为:{“area”:“AREA_US”,“dt”:“2019-10-10 16:45:46”,“score”:0.5,“level”:“A”,“type”:“s5”}
获取的Json字符串为:{“area”:“AREA_US”,“dt”:“2019-10-10 16:45:46”,“score”:0.8,“level”:“C”,“type”:“s3”}

图片:

上一篇:项目实战 从 0 到 1 学习之Flink(25)Flink从redis中获取数据作为source源
下一篇:项目实战 从 0 到 1 学习之Flink (23)Flink 读取hive并写入hive

发表评论

最新留言

表示我来过!
[***.240.166.169]2025年05月04日 18时23分04秒