HDOJ-1019 Least Common Multiple
发布日期:2021-05-10 18:16:56 浏览次数:33 分类:精选文章

本文共 1458 字,大约阅读时间需要 4 分钟。

Problem Description

The least common multiple (LCM) of a set of positive integers is the smallest positive integer which is divisible by all the numbers in the set. For example, the LCM of 5, 7 and 15 is 105.

(一组正整数的最小公倍数(LCM)是最小正整数,其可被集合中的所有数字整除。例如,5,7和15的LCM是105。)

Input

Input will consist of multiple problem instances. The first line of the input will contain a single integer indicating the number of problem instances. Each instance will consist of a single line of the form m n1 n2 n3 … nm where m is the number of integers in the set and n1 … nm are the integers. All integers will be positive and lie within the range of a 32-bit integer.
(输入将包含多个问题实例。输入的第一行将包含一个整数,表示问题实例的数量。每个实例将由m n1 n2 n3 … nm形式的单个行组成,其中m是集合中的整数数,n1 … nm是整数。所有整数都是正数,并且位于32位整数的范围内。)

Output

For each problem instance, output a single line containing the corresponding LCM. All results will lie in the range of a 32-bit integer.
(对于每个问题实例,输出包含相应LCM的单行。所有结果都将位于32位整数的范围内。)

Sample Input

2
3 5 7 15
6 4 10296 936 1287 792 1

Sample Output

105
10296

用gcd逐个求出相邻两数字的最小公倍数lcm

LCM(a,b) = a * b / GCD(a,b)
注意:求解最小公倍数时,先乘后除,乘法明显可能溢出(wa了一发),所以应该先除后乘
LCM(a,b) = a / GCD(a,b) b*

#include
using namespace std;typedef long long ll;ll gcd(ll a, ll b) { return b == 0 ? a : gcd(b, a%b);}int main() { ll r; cin >> r; while (r--) { ll n, m1, m2, s; cin >> n>> m1; s = m1; for (int i = 0; i < n-1; i++) { cin >> m1; s = m1/gcd(m1, s)*s; } cout << s<
上一篇:c++——抽象类以及string知识点补充
下一篇:HDOJ-1014 Uniform Generator

发表评论

最新留言

表示我来过!
[***.240.166.169]2025年04月05日 10时48分26秒

关于作者

    喝酒易醉,品茶养心,人生如梦,品茶悟道,何以解忧?唯有杜康!
-- 愿君每日到此一游!

推荐文章