实验记录
发布日期:2021-05-10 14:19:09 浏览次数:23 分类:精选文章

本文共 21417 字,大约阅读时间需要 71 分钟。

1、basic model 训练采用X4的数据,noise的范围为【0,15】;

2、subnetwork训练的数据应该是采用noise范围为【0,66】;不采用tvloss,同样采用LR进行训练,

3、finutune两个模型。基于BN层。X4与【0,66】的数据;

 

python train.py -opt options/train/train_sr.json

nosie level estimation 网络的setting

{  "name": "subnetwork_X1_0_66" //  please remove "debug_" during training  , "tb_logger_dir": "sft666"  , "use_tb_logger": true  , "model":"sr"  , "scale": 1  , "crop_scale": 0  , "gpu_ids": [3,4]//  , "init_type": "kaiming"////  , "finetune_type": "sft"//  , "init_norm_type": "zero"  , "datasets": {    "train": {      "name": "DIV2K"      , "mode": "LRHR"      , "dataroot_HR": "/home/guanwp/BasicSR_datasets/DIV2K800_sub_bicLRx4"      , "dataroot_LR": "/home/guanwp/BasicSR_datasets/DIV2K800_sub_bicLRx4_noise_66"      , "subset_file": null      , "use_shuffle": true      , "n_workers": 8      , "batch_size": 24 // 16      , "HR_size": 96 // 128 | 192 | 96      , "noise_gt": true//residual for the noise      , "use_flip": true      , "use_rot": true    }  , "val": {      "name": "val_set5_c03s08_LR_mod4"      , "mode": "LRHR"      , "dataroot_HR": "/home/guanwp/BasicSR_datasets/val_set5/Set5_sub_bicLRx4"      , "dataroot_LR": "/home/guanwp/BasicSR_datasets/val_set5/Set5_sub_bicLRx4_noise_66"      , "noise_gt": true//residual for the noise    }  }  , "path": {    "root": "/home/guanwp/Blind_Restoration-master/sft666"    , "pretrain_model_G": null  }//  , "network_G": {    "which_model_G": "denoise_resnet" // RRDB_net | sr_resnet | modulate_denoise_resnet |noise_subnet    //    , "norm_type": "adaptive_conv_res"    //, "norm_type": "batch"    ,    "mode": "CNA",    "nf": 64,    "nb": 16,    "in_nc": 3,    "out_nc": 3    //    , "gc": 32    ,    "group": 1      ,"down_scale": 2//denoise srresnet    //    , "gate_conv_bias": true    //    , "ada_ksize": 1    //    , "num_classes": 2  }//    , "network_G": {//    "which_model_G": "srcnn" // RRDB_net | sr_resnet    , "norm_type": null//    , "norm_type": "adaptive_conv_res"//    , "mode": "CNA"//    , "nf": 64//    , "in_nc": 1//    , "out_nc": 1//    , "ada_ksize": 5//  }  , "train": {//    "lr_G": 1e-3    "lr_G": 1e-4    , "lr_scheme": "MultiStepLR"//    , "lr_steps": [200000, 400000, 600000, 800000]    , "lr_steps": [500000]    , "lr_gamma": 0.1//    , "lr_gamma": 0.5    , "pixel_criterion": "l2"    , "pixel_criterion_reg": "tv"    , "pixel_weight": 1.0    , "val_freq": 2e3    , "manual_seed": 0    , "niter": 1e6//    , "niter": 6e5  }  , "logger": {    "print_freq": 200    , "save_checkpoint_freq": 2e3  }}

basic model的setting

{  "name": "subnetwork_X1_0_66" //  please remove "debug_" during training  , "tb_logger_dir": "sft666"  , "use_tb_logger": true  , "model":"sr"  , "scale": 4  , "crop_scale": 0  , "gpu_ids": [3,4]//  , "init_type": "kaiming"////  , "finetune_type": "sft"//  , "init_norm_type": "zero"  , "datasets": {    "train": {      "name": "DIV2K"      , "mode": "LRHR"      , "dataroot_HR": "/home/guanwp/BasicSR_datasets/DIV2K800_sub"      , "dataroot_LR": "/home/guanwp/BasicSR_datasets/DIV2K800_sub_bicLRx4_noise_15"      , "subset_file": null      , "use_shuffle": true      , "n_workers": 8      , "batch_size": 24 // 16      , "HR_size": 96 // 128 | 192 | 96      //, "noise_gt": true//residual for the noise      , "use_flip": true      , "use_rot": true    }  , "val": {      "name": "val_set5_c03s08_LR_mod4"      , "mode": "LRHR"      , "dataroot_HR": "/home/guanwp/BasicSR_datasets/val_set5/Set5"      , "dataroot_LR": "/home/guanwp/BasicSR_datasets/val_set5/Set5_sub_bicLRx4_noise_15"      //, "noise_gt": true//residual for the noise    }  }  , "path": {    "root": "/home/guanwp/Blind_Restoration-master/sft666"    , "pretrain_model_G": null  }//  , "network_G": {    "which_model_G": "sr_resnet" // RRDB_net | sr_resnet | modulate_denoise_resnet |noise_subnet    //    , "norm_type": "adaptive_conv_res"    , "norm_type": null//"batch"    ,    "mode": "CNA",    "nf": 64,    "nb": 16,    "in_nc": 3,    "out_nc": 3    //    , "gc": 32    ,    "group": 1      //,"down_scale": 2//denoise srresnet    //    , "gate_conv_bias": true    //    , "ada_ksize": 1    //    , "num_classes": 2  }//    , "network_G": {//    "which_model_G": "srcnn" // RRDB_net | sr_resnet    , "norm_type": null//    , "norm_type": "adaptive_conv_res"//    , "mode": "CNA"//    , "nf": 64//    , "in_nc": 1//    , "out_nc": 1//    , "ada_ksize": 5//  }  , "train": {//    "lr_G": 1e-3    "lr_G": 1e-4    , "lr_scheme": "MultiStepLR"//    , "lr_steps": [200000, 400000, 600000, 800000]    , "lr_steps": [500000]    , "lr_gamma": 0.1//    , "lr_gamma": 0.5    , "pixel_criterion": "l2"    , "pixel_criterion_reg": "tv"    , "pixel_weight": 1.0    , "val_freq": 2e3    , "manual_seed": 0    , "niter": 1e6//    , "niter": 6e5  }  , "logger": {    "print_freq": 200    , "save_checkpoint_freq": 2e3  }}

模型训练好的结果如下:

好,接下来训练SFT-layer。由于在训练SFT-layer的时候,原来的basicmodel是没有BN层的,当然也没有SFT-layer层,就是网络的结构是发生了变化的,故此需要用transfer_params_degration.py文件进行模型的转换

import torchfrom torch.nn import initfrom collections import OrderedDict# pretrained_net = torch.load('../../baselines/experiments/bicx3_nonorm_denoise_resnet_DIV2K/models/794000_G.pth')# pretrained_net = torch.load('../../baselines_jpeg/experiments/JPEG80_gray_nonorm_denoise_resnet_DIV2K/models/964000_G.pth')# pretrained_net = torch.load('../../noise_from15to75/experiments/gaussian_from15to75_resnet_denoise_DIV2K/models/986000_G.pth')# pretrained_net = torch.load('/home/jwhe/workspace/BasicSR_v3/experiments/pretrained_models/noise_c16s06/bicx4_nonorm_denoise_resnet_DIV2K/992000_G.pth')# pretrained_net = torch.load('/home/jwhe/workspace/BasicSR_v3/sr_c16s06/experiments/LR_srx4_c16s06_resnet_denoise_DIV2K/models/704000_G.pth')pretrained_net = torch.load('/home/jwhe/workspace/BasicSR_v3/sr/experiments/LR_srx4_resnet_denoise_DIV2K/models/516000_G.pth')# should run train debug mode first to get an initial model# pretrained_net_degradation = torch.load('../../noise_subnet/experiments/noise75_subnet/models/84000_G.pth')# pretrained_net_degradation = torch.load('../../noise_subnet/experiments/noise15_subnet/models/34000_G.pth')# reference_net = torch.load('../../noise_estimate/experiments/finetune_75_sft_64_nores_noise_estimate_15_denoise_resnet_DIV2K/models/20000_G.pth')adaptive_norm_net = OrderedDict()# initialize the norm with value 0# for k, v in adaptive_norm_net.items():#     if 'gamma' in k:#         print(k, 'gamma')#         v.fill_(0)#     elif 'beta' in k:#         print(k, 'beta')#         v.fill_(0)# for k, v in adaptive_norm_net.items():#     if 'gamma' in k:#         print(k, 'gamma')#         v.fill_(0)#     elif 'beta' in k:#         print(k, 'beta')#         v.fill_(0)adaptive_norm_net['fea_conv.0.weight'] = pretrained_net['model.0.weight']adaptive_norm_net['fea_conv.0.bias'] = pretrained_net['model.0.bias']# residual blocksfor i in range(16):    adaptive_norm_net['norm_branch.{:d}.conv_block0.0.weight'.format(i)] = pretrained_net['model.1.sub.{:d}.res.0.weight'.format(i)]    adaptive_norm_net['norm_branch.{:d}.conv_block0.0.bias'.format(i)] = pretrained_net['model.1.sub.{:d}.res.0.bias'.format(i)]    adaptive_norm_net['norm_branch.{:d}.conv_block1.0.weight'.format(i)] = pretrained_net['model.1.sub.{:d}.res.2.weight'.format(i)]    adaptive_norm_net['norm_branch.{:d}.conv_block1.0.bias'.format(i)] = pretrained_net['model.1.sub.{:d}.res.2.bias'.format(i)]adaptive_norm_net['LR_conv.0.weight'] = pretrained_net['model.1.sub.16.weight']adaptive_norm_net['LR_conv.0.bias'] = pretrained_net['model.1.sub.16.bias']# HR# adaptive_norm_net['HR_branch.0.weight'] = pretrained_net['model.2.weight']# adaptive_norm_net['HR_branch.0.bias'] = pretrained_net['model.2.bias']# adaptive_norm_net['HR_branch.3.weight'] = pretrained_net['model.5.weight']# adaptive_norm_net['HR_branch.3.bias'] = pretrained_net['model.5.bias']# adaptive_norm_net['HR_branch.5.weight'] = pretrained_net['model.7.weight']# adaptive_norm_net['HR_branch.5.bias'] = pretrained_net['model.7.bias']adaptive_norm_net['HR_branch.0.weight'] = pretrained_net['model.2.weight']adaptive_norm_net['HR_branch.0.bias'] = pretrained_net['model.2.bias']adaptive_norm_net['HR_branch.3.weight'] = pretrained_net['model.5.weight']adaptive_norm_net['HR_branch.3.bias'] = pretrained_net['model.5.bias']adaptive_norm_net['HR_branch.6.weight'] = pretrained_net['model.8.weight']adaptive_norm_net['HR_branch.6.bias'] = pretrained_net['model.8.bias']adaptive_norm_net['HR_branch.8.weight'] = pretrained_net['model.10.weight']adaptive_norm_net['HR_branch.8.bias'] = pretrained_net['model.10.bias']# for k, v in pretrained_net_degradation.items():#     adaptive_norm_net[k] = vprint('OK. \n Saving model...')# torch.save(adaptive_norm_net, '../../experiments/pretrained_models/jpeg_estimation/JPEG80_gray_nonorm_denoise_resnet_DIV2K/jpeg80_964000.pth')# torch.save(adaptive_norm_net, '../../experiments/pretrained_models/50to15_models/gaussian75_nonorm_denoise_resnet_DIV2K/noise_CNA_adaptive_988000.pth')# torch.save(adaptive_norm_net, '../../experiments/pretrained_models/basic_model/gaussian_from15to75_resnet_denoise_DIV2K/from15to75_basicmodel_986000.pth')# torch.save(adaptive_norm_net, '../../experiments/pretrained_models/sr_c16s06/LR_srx4_c16s06_resnet_denoise_DIV2K/c16s06_basicmodel_704000.pth')torch.save(adaptive_norm_net, '../../experiments/pretrained_models/sr/LR_srx4_resnet_denoise_DIV2K/basicmodel_516000.pth')

python train.py -opt options/train/train_sub_sr.json

setting(注意不要noise_groundth)

{  "name": "finetune_noiseestimation_sftlayer_15to66" //  please remove "debug_" during training  , "tb_logger_dir": "sft666"  , "use_tb_logger": true  , "model":"sr_sub"  , "scale": 4  , "crop_scale": 4  , "gpu_ids": [4,5]//  , "init_type": "kaiming"////  , "finetune_type": "sft_basic" //sft | basic//  , "init_norm_type": "zero"  , "datasets": {    "train": {      "name": "DIV2K"      , "mode": "LRHR"      , "dataroot_HR": "/home/guanwp/BasicSR_datasets/DIV2K800_sub"      , "dataroot_LR": "/home/guanwp/BasicSR_datasets/DIV2K800_sub_bicLRx4_noise_66"      , "subset_file": null      , "use_shuffle": true      , "n_workers": 8      , "batch_size": 24 // 16      , "HR_size": 96 // 128 | 192 | 96      //, "noise_gt": true      , "use_flip": true      , "use_rot": true    }//  , "val": {      "name": "val_set5_x4_c03s08_mod4",      "mode": "LRHR",      "dataroot_HR": "/home/guanwp/BasicSR_datasets/val_set5/Set5",      "dataroot_LR": "/home/guanwp/BasicSR_datasets/val_set5/Set5_sub_bicLRx4_noise_66"     // , "noise_gt": true    }////    , "val": {//      "name": "val_set5_x3_gray_mod6"//      , "mode": "LRHR"//      , "dataroot_HR": "/media/sdc/jwhe/BasicSR_v2/data/val/Set5_val/mod6/Set5_gray_mod6"//      , "dataroot_LR": "/media/sdc/jwhe/BasicSR_v2/data/val/Set5_val/mod6/Set5_gray_bicx3"//    }  }  , "path": {    "root": "/home/guanwp/Blind_Restoration-master/sft666"  , "pretrain_model_G": "/home/guanwp/Blind_Restoration-master/sft/686000_G.pth"  , "pretrain_model_sub": "/home/guanwp/Blind_Restoration-master/sft666/experiments/subnetwork_X1_0_66/models/528000_G.pth"  }  , "network_G": {    "which_model_G": "modulate_sr_resnet" // RRDB_net | sr_resnet | modulate_sr_resnet//    , "norm_type": "adaptive_conv_res"    , "norm_type": "sft"//    , "norm_type": null    , "mode": "CNA"    , "nf": 64    , "nb": 16    , "in_nc": 3    , "out_nc": 3//    , "gc": 32    , "group": 1    , "gate_conv_bias": true  }  , "network_sub": {    "which_model_sub": "denoise_resnet" // RRDB_net | sr_resnet | modulate_denoise_resnet |noise_subnet    //    , "norm_type": "adaptive_conv_res"    ,    //"norm_type": "batch",    "mode": "CNA",    "nf": 64        , "nb": 16    ,    "in_nc": 3,    "out_nc": 3,    "group": 1,    "down_scale": 2  }  , "train": {//    "lr_G": 1e-3    "lr_G": 1e-4    , "lr_scheme": "MultiStepLR"//    , "lr_steps": [200000, 400000, 600000, 800000]    , "lr_steps": [500000]    , "lr_gamma": 0.1//    , "lr_gamma": 0.5    , "pixel_criterion_basic": "l2"    , "pixel_criterion_noise": "l2"    , "pixel_criterion_reg_noise": "tv"    , "pixel_weight_basic": 1.0    , "pixel_weight_noise": 1.0    , "val_freq": 2e3    , "manual_seed": 0    , "niter": 1e6//    , "niter": 6e5  }  , "logger": {    "print_freq": 200    , "save_checkpoint_freq": 2e3  }}

首先给出sub_srmodel,关键部分应该是在optimize_parameters,可以看到数据的流向。与级联网络不一样的地方是,这里不需要concat

import osfrom collections import OrderedDictimport torchimport torch.nn as nnfrom torch.optim import lr_schedulerimport models.networks as networksfrom .base_model import BaseModelfrom .modules.loss import TVLossclass SRModel(BaseModel):    def __init__(self, opt):        super(SRModel, self).__init__(opt)        train_opt = opt['train']        finetune_type = opt['finetune_type']        # define network and load pretrained models        self.netG = networks.define_G(opt).to(self.device)        self.subnet = networks.define_sub(opt).to(self.device)        self.load()        if self.is_train:            self.netG.train()            self.subnet.train()            # self.subnet.eval()            # loss            loss_type_noise = train_opt['pixel_criterion_noise']            if loss_type_noise == 'l1':                self.cri_pix_noise = nn.L1Loss().to(self.device)            elif loss_type_noise == 'l2':                self.cri_pix_noise = nn.MSELoss().to(self.device)            else:                raise NotImplementedError('Loss type [{:s}] is not recognized.'.format(loss_type_noise))            self.l_pix_noise_w = train_opt['pixel_weight_noise']            loss_reg_noise = train_opt['pixel_criterion_reg_noise']            if loss_reg_noise == 'tv':                self.cri_pix_reg_noise = TVLoss(0.00001).to(self.device)            loss_type_basic = train_opt['pixel_criterion_basic']            if loss_type_basic == 'l1':                self.cri_pix_basic = nn.L1Loss().to(self.device)            elif loss_type_basic == 'l2':                self.cri_pix_basic = nn.MSELoss().to(self.device)            else:                raise NotImplementedError('Loss type [{:s}] is not recognized.'.format(loss_type_basic))            self.l_pix_basic_w = train_opt['pixel_weight_basic']            # optimizers            wd_G = train_opt['weight_decay_G'] if train_opt['weight_decay_G'] else 0            self.optim_params = self.__define_grad_params(finetune_type)            self.optimizer_G = torch.optim.Adam(                self.optim_params, lr=train_opt['lr_G'], weight_decay=wd_G)            self.optimizers.append(self.optimizer_G)            # schedulers            if train_opt['lr_scheme'] == 'MultiStepLR':                for optimizer in self.optimizers:                    self.schedulers.append(lr_scheduler.MultiStepLR(optimizer, \                        train_opt['lr_steps'], train_opt['lr_gamma']))            else:                raise NotImplementedError('MultiStepLR learning rate scheme is enough.')            self.log_dict = OrderedDict()        print('---------- Model initialized ------------------')        self.print_network()        print('-----------------------------------------------')    def feed_data(self, data, need_HR=True):        self.var_L = data['LR'].to(self.device)  # LR        #self.real_H = data['HR'].to(self.device)  # HR        #self.mid_L = data['MR'].to(self.device)  # MR    def __define_grad_params(self, finetune_type=None):        optim_params = []        if finetune_type == 'sft':            for k, v in self.netG.named_parameters():                v.requires_grad = False                if k.find('Gate') >= 0:                    v.requires_grad = True                    optim_params.append(v)                    print('we only optimize params: {}'.format(k))        elif finetune_type == 'sub_sft':            for k, v in self.netG.named_parameters():                v.requires_grad = False                if k.find('Gate') >= 0:                    v.requires_grad = True                    optim_params.append(v)                    print('we only optimize params: {}'.format(k))            for k, v in self.subnet.named_parameters():  # can optimize for a part of the model                v.requires_grad = False                if k.find('degration') >= 0:                    v.requires_grad = True                    optim_params.append(v)                    print('we only optimize params: {}'.format(k))        elif finetune_type == 'basic' or finetune_type == 'sft_basic':            for k, v in self.netG.named_parameters():                v.requires_grad = True                optim_params.append(v)                print('we only optimize params: {}'.format(k))            for k, v in self.subnet.named_parameters():                v.requires_grad = False        else:            for k, v in self.netG.named_parameters():  # can optimize for a part of the model                if v.requires_grad:                    optim_params.append(v)                    print('params [{:s}] will optimize.'.format(k))                else:                    print('WARNING: params [{:s}] will not optimize.'.format(k))            for k, v in self.subnet.named_parameters():  # can optimize for a part of the model                if v.requires_grad:                    optim_params.append(v)                    print('params [{:s}] will optimize.'.format(k))                else:                    print('WARNING: params [{:s}] will not optimize.'.format(k))        return optim_params    def optimize_parameters(self, step):        self.optimizer_G.zero_grad()        self.fake_noise = self.subnet(self.var_L)        l_pix_noise = self.l_pix_noise_w * self.cri_pix_noise(self.fake_noise, self.mid_L)        l_pix_noise = l_pix_noise + self.cri_pix_reg_noise(self.fake_noise)        # self.fake_H = self.netG(torch.cat((self.var_L, self.fake_noise), 1))        self.fake_H = self.netG((self.var_L, self.fake_noise))        l_pix_basic = self.l_pix_basic_w * self.cri_pix_basic(self.fake_H, self.real_H)        l_pix = l_pix_noise + l_pix_basic        l_pix.backward()        # self.fake_noise = self.subnet(self.var_L)        # # self.fake_H = self.netG(torch.cat((self.var_L, self.fake_noise), 1))        # self.fake_H = self.netG((self.var_L, self.fake_noise))        # l_pix = self.l_pix_basic_w * self.cri_pix_basic(self.fake_H, self.real_H)        # l_pix.backward()        self.optimizer_G.step()        self.log_dict['l_pix'] = l_pix.item()    def test(self):        self.netG.eval()        self.subnet.eval()        if self.is_train:            for v in self.optim_params:                v.requires_grad = False        else:            for k, v in self.netG.named_parameters():                v.requires_grad = False            for k, v in self.subnet.named_parameters():                v.requires_grad = False        self.fake_noise = self.subnet(self.var_L)        self.fake_H = self.netG(torch.cat((self.var_L, self.fake_noise*2.6), 1))        #self.fake_H = self.netG((self.var_L, self.fake_noise))        if self.is_train:            for v in self.optim_params:                v.requires_grad = True        else:            for k, v in self.netG.named_parameters():                v.requires_grad = True            for k, v in self.subnet.named_parameters():                v.requires_grad = True        self.netG.train()        self.subnet.train()        # self.subnet.eval()    # def test(self):    #     self.netG.eval()    #     for k, v in self.netG.named_parameters():    #         v.requires_grad = False    #     self.fake_H = self.netG(self.var_L)    #     for k, v in self.netG.named_parameters():    #         v.requires_grad = True    #     self.netG.train()    def get_current_log(self):        return self.log_dict    def get_current_visuals(self, need_HR=True):        out_dict = OrderedDict()        out_dict['LR'] = self.var_L.detach()[0].float().cpu()        out_dict['MR'] = self.fake_noise.detach()[0].float().cpu()        out_dict['SR'] = self.fake_H.detach()[0].float().cpu()        if need_HR:            out_dict['HR'] = self.real_H.detach()[0].float().cpu()        return out_dict    def print_network(self):        # G        s, n = self.get_network_description(self.netG)        print('Number of parameters in G: {:,d}'.format(n))        if self.is_train:            message = '-------------- Generator --------------\n' + s + '\n'            network_path = os.path.join(self.save_dir, '../', 'network.txt')            with open(network_path, 'w') as f:                f.write(message)            # subnet            s, n = self.get_network_description(self.subnet)            print('Number of parameters in subnet: {:,d}'.format(n))            message = '\n\n\n-------------- subnet --------------\n' + s + '\n'            with open(network_path, 'a') as f:                f.write(message)    def load(self):        load_path_G = self.opt['path']['pretrain_model_G']        load_path_sub = self.opt['path']['pretrain_model_sub']        if load_path_G is not None:            print('loading model for G [{:s}] ...'.format(load_path_G))            self.load_network(load_path_G, self.netG)        if load_path_sub is not None:            print('loading model for subnet [{:s}] ...'.format(load_path_sub))            self.load_network(load_path_sub, self.subnet)    def save(self, iter_label):        self.save_network(self.save_dir, self.netG, 'G', iter_label)        self.save_network(self.save_dir, self.subnet, 'sub', iter_label)

关于SFT-layer部分可以参考博文《》

通过SFT-layer使得basic model从【0,15】到【0,66】

结果:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

上一篇:论文阅读笔记之——《Dynamic Filter Networks》
下一篇:关于高斯模糊核

发表评论

最新留言

做的很好,不错不错
[***.243.131.199]2025年04月20日 06时23分45秒

关于作者

    喝酒易醉,品茶养心,人生如梦,品茶悟道,何以解忧?唯有杜康!
-- 愿君每日到此一游!

推荐文章