小样本学习&元学习经典论文整理||持续更新
发布日期:2021-05-10 01:43:21 浏览次数:21 分类:原创文章

本文共 11953 字,大约阅读时间需要 39 分钟。

  本文整理了近些年来有关小样本学习的经典文章,并附上了原文下载链接以及论文解读链接。关注公众号“深视”,回复“小样本学习”,可以打包下载全部文章。该文我会持续更新,不断增添新的文章和相关解读,大家可以收藏关注一下。

一、基于度量学习的小样本学习算法

1.《Siamese Neural Networks for One-shot Image Recognition》
  网络名称:Siamese Network
  文章来源:ICML2015
  原文下载:
  论文解读:
  源码地址:尚未开源
2.《Matching Networks for One Shot Learning》
  网络名称:Matching Network
  文章来源:NIPS2016
  原文下载:
  论文解读:
  源码地址:尚未开源
3.《Prototypical Networks for Few-shot Learning》
  网络名称:Prototypical Network
  文章来源:NIPS2017
  原文下载:
  论文解读:
  源码地址:
4.《Learning to Compare: Relation Network for Few-Shot Learning》
  网络名称:Relation Network
  文章来源:CVPR2018
  原文下载:
  论文解读:
  源码地址:
5.《Finding Task-Relevant Features for Few-Shot Learning by Category Traversal》
  网络名称:CTM
  文章来源:CVPR2019
  原文下载:
  论文解读:
  源码地址:
6.《Variational Prototyping-Encoder: One-Shot Learning with Prototypical Images》
  网络名称:VPE
  文章来源:CVPR2019
  原文下载:
  论文解读:
  源码地址:
7.《RepMet: Representative-based metric learning for classification and few-shot object detection》
  网络名称:RepMet
  文章来源:CVPR2019
  原文下载:
  论文解读:
  源码地址:尚未开源
8.《Revisiting Local Descriptor based Image-to-Class Measure for Few-shot Learning》
  网络名称:DN4
  文章来源:CVPR2019
  原文下载:
  论文解读:
  源码地址:
9.《Few-Shot Learning with Localization in Realistic Settings》
  网络名称:
  文章来源:CVPR2019
  原文下载:
  论文解读:
  源码地址:
10.《Dense Classification and Implanting for Few-Shot Learning》
  网络名称:
  文章来源:CVPR2019
  原文下载:
  论文解读:
  源码地址:尚未开源
11.《TADAM: Task dependent adaptive metric for improved few-shot learning》
  网络名称:TADAM
  文章来源:NIPS2018
  原文下载:
  论文解读:
  源码地址:
12.《Power Normalizing Second-order Similarity Network for Few-shot Learning》
  网络名称:SoSN
  文章来源:WACV2019
  原文下载:
  论文解读:
  源码地址:尚未开源
13.《Few-Shot Learning with Metric-Agnostic Conditional Embeddings》
  网络名称:MACO
  文章来源:CVPR2018
  原文下载:
  论文解读:
  源码地址:尚未开源
14.《Improved Few-Shot Visual Classification》
  网络名称:Simple CNAPS
  文章来源:CVPR2020
  原文下载:
  论文解读:
  源码地址:
15.《DeepEMD: Few-Shot Image Classification with Differentiable Earth Mover’s Distance and Structured Classifier》
  网络名称:DeepEMD
  文章来源:CVPR2020
  原文下载:
  论文解读:
  源码地址:尚未开源
16.《Boosting Few-Shot Learning with Adaptive Margin Loss》
  网络名称:CRAML和TRAML
  文章来源:CVPR2020
  原文下载:
  论文解读:
  源码地址:尚未开源
17.《Adaptive Subspaces for Few-Shot Learning》
  网络名称:DSN
  文章来源:CVPR2020
  原文下载:
  论文解读:
  源码地址:
18.《Learning Embedding Adaptation for Few-Shot Learning》
  网络名称:FEAT
  文章来源:
  原文下载:
  论文解读:
  源码地址:
19.《TapNet: Neural Network Augmented with Task-Adaptive Projection for Few-Shot Learning》
  网络名称:TapNet
  文章来源:ICML2019
  原文下载:
  论文解读:
  源码地址:尚未开源
20.《Few-Shot Learning with Embedded Class Models and Shot-Free Meta Training》
  网络名称:Shot-Free
  文章来源:ICCV 2019
  原文下载:
  论文解读:
  源码地址:尚未开源
21.《Few-Shot Learning with Graph Neural Networks》
  网络名称:GNN
  文章来源:ICLR2018
  原文下载:
  论文解读:
  源码地址:
22.《Transductive Episodic-Wise Adaptive Metric for Few-Shot Learning》
  网络名称:TEAM
  文章来源:ICCV2019
  原文下载:
  论文解读:
  源码地址:尚未开源
23.《Few-Shot Learning with Global Class Representations》
  网络名称:
  文章来源:ICCV2019
  原文下载:
  论文解读:
  源码地址:尚未开源
24.《PARN: Position-Aware Relation Networks for Few-Shot Learning》
  网络名称:PARN
  文章来源:ICCV2019
  原文下载:
  论文解读:
  源码地址:尚未开源
25.《Edge-Labeling Graph Neural Network for Few-shot Learning》
  网络名称:EGNN
  文章来源:CVPR2019
  原文下载:
  论文解读:
  源码地址:
26.《DPGN: Distribution Propagation Graph Network for Few-shot Learning》
  网络名称:DPGN
  文章来源:CVPR2020
  原文下载:
  论文解读:
  源码地址:
27.《Adaptive Cross-Modal Few-shot Learning》
  网络名称:AM3
  文章来源:NIPS2019
  原文下载:
  论文解读:
  源码地址:尚未开源
28.《Self-attention relation network for few-shot learning》
  网络名称:SARN
  文章来源:ICMEW2019
  原文下载:
  论文解读:
  源码地址:尚未开源
29.《Principal characteristic networks for few-shot learning》
  网络名称:PC-Net
  文章来源:Journal Of Visual Communication And Image Representation
  原文下载:
  论文解读:
  源码地址:尚未开源
30.《Instance-Level Embedding Adaptation for Few-Shot Learning》
  网络名称:AAM
  文章来源:IEEE Access
  原文下载:
  论文解读:
  源码地址:尚未开源
31.《Generative Adversarial Residual Pairwise Networks for One Shot Learning 》
  网络名称:SRPN
  文章来源:
  原文下载:
  论文解读:
  源码地址:尚未开源
32.《Deep Triplet Ranking Networks for One-Shot Recognition》
  网络名称:Triplet Ranking Networks
  文章来源:
  原文下载:
  论文解读:
  源码地址:尚未开源
33.《Large Margin Few-Shot Learning》
  网络名称:L-GNN/L-PN
  文章来源:
  原文下载:
  论文解读:
  源码地址:尚未开源
34.《Distribution Consistency Based Covariance Metric Networks for Few-Shot Learning》
  网络名称:CovaMNet
  文章来源:AAAI 2019
  原文下载:
  论文解读:
  源码地址:
35 .《RelationNet2: Deep Comparison Columns for Few-Shot Learning》
  网络名称:DCN
  文章来源:IJCNN2020
  原文下载:
  论文解读:
  源码地址:

二、基于参数优化的小样本学习算法

1.《Optimization as A Model for Few-shot Learning》
  网络名称:Meta-Learner LSTM
  文章来源:ICLR2017
  原文下载:
  论文解读:
  源码地址:
2.《Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks》
  网络名称:MAML
  文章来源:ICML2017
  原文下载:
  论文解读:
  源码地址:
3.《Meta-SGD: Learning to Learn Quickly for Few-Shot Learning》
  网络名称:Meta-SGD
  文章来源:ICML2018
  原文下载:
  论文解读:
  源码地址:尚未开源
4.《Task-Agnostic Meta-Learning for Few-shot Learning》
  网络名称:TAML
  文章来源:CVPR2019
  原文下载:
  论文解读:
  源码地址:尚未开源
5.《On First-Order Meta-Learning Algorithms》
  网络名称:Reptile
  文章来源:
  原文下载:
  论文解读:
  源码地址:尚未开源
6.《Deep Meta-Learning: Learning to Learn in the Concept Space》
  网络名称:DEML
  文章来源:华为诺亚方舟实验室
  原文下载:
  论文解读:
  源码地址:尚未开源
7.《Meta-Learning of Neural Architectures for Few-Shot Learning》
  网络名称:MetaNAS
  文章来源:CVPR2020
  原文下载:
  论文解读:
  源码地址:尚未开源
8.《Attentive Weights Generation for Few Shot Learning via Information Maximization》
  网络名称:AWGIM
  文章来源:CVPR2020
  原文下载:
  论文解读:
  源码地址:
9.《Meta-learning with Latent Embedding Optimization》
  网络名称:LEO
  文章来源:ICLR2019
  原文下载:
  论文解读:
  源码地址:
10.《Meta-learning with differentiable closed-form solvers》
  网络名称:R2-D2/LR-D2
  文章来源:ICLR2019
  原文下载:
  论文解读:
  源码地址:
11.《MetAdapt: Meta-Learned Task-Adaptive Architecture for Few-Shot Classification》
  网络名称:MetAdapt
  文章来源:
  原文下载:
  论文解读:
  源码地址:尚未开源
12.《Gradient-Based Meta-Learning with Learned Layerwise Metric and Subspace》
  网络名称:T-net/MT-net
  文章来源:ICML2018
  原文下载:
  论文解读:
  源码地址:
13.《Auto-Meta: Automated Gradient Based Meta Learner Search》
  网络名称:Auto-Meta
  文章来源:NIPS2018
  原文下载:
  论文解读:
  源码地址:尚未开源

三、基于外部记忆的小样本学习算法

1.《Meta-Learning with Memory-Augmented Neural Networks》
  网络名称:MANN
  文章来源:ICML2016
  原文下载:
  论文解读:
  源码地址:尚未开源
2.《Meta Networks》
  网络名称:MetaNet
  文章来源:ICML2017
  原文下载:
  论文解读:
  源码地址:尚未开源
3.《Learning to remember rare events》
  网络名称:
  文章来源:ICLR2017
  原文下载:
  论文解读:
  源码地址:尚未开源
4.《Memory Matching Networks for One-Shot Image Recognition》
  网络名称:MM-Net
  文章来源:CVPR2018
  原文下载:
  论文解读:
  源码地址:尚未开源
5.《Dynamic Few-Shot Visual Learning without Forgetting》
  网络名称:
  文章来源:CVPR2018
  原文下载:
  论文解读:
  源码地址:

四、基于数据增强的小样本学习算法

1.《Low-Shot Visual Recognition by Shrinking and Hallucinating Features》
  网络名称:SGM
  文章来源:ICCV2017
  原文下载:
  论文解读:
  论文解读(新):
  源码地址:
2.《Meta-learning for semi-supervised few-shot classification》
  网络名称:
  文章来源:ICLR2018
  原文下载:
  论文解读:
  源码地址:
3.《LaSO: Label-Set Operations networks for multi-label few-shot learning》
  网络名称:LaSONet
  文章来源:CVPR2019
  原文下载:
  论文解读:
  源码地址:尚未开源
4.《Image Deformation Meta-Networks for One-Shot Learning》
  网络名称:IDeMe-Net
  文章来源:CVPR2019
  原文下载:
  论文解读:
  源码地址:
5.《Few-shot Learning via Saliency-guided Hallucination of Samples》
  网络名称:SalNet
  文章来源:CVPR2019
  原文下载:
  论文解读:
  源码地址:尚未开源
6.《Low-Shot Learning from Imaginary Data》
  网络名称:PMN
  文章来源:CVPR2018
  原文下载:
  论文解读:
  源码地址:尚未开源
7.《Instance Credibility Inference for Few-Shot Learning》
  网络名称:ICI
  文章来源:CVPR2020
  原文下载:
  论文解读:
  源码地址:
8.《Adversarial Feature Hallucination Networks for Few-Shot Learning》
  网络名称:AFHN
  文章来源:CVPR2020
  原文下载:
  论文解读:
  源码地址:尚未开源
9.《∆-encoder: an effective sample synthesis method for few-shot object recognition》
  网络名称:∆-encoder
  文章来源:NIPS2018
  原文下载:
  论文解读:
  源码地址:

五、基于语义信息的小样本学习算法

1.《Large-Scale Few-Shot Learning: Knowledge Transfer With Class Hierarchy》
  网络名称:
  文章来源:CVPR2019
  原文下载:
  论文解读:
  源码地址:尚未开源
2.《Generalized Zero- and Few-Shot Learning via Aligned Variational Autoencoders》
  网络名称:CADA-VAE
  文章来源:CVPR2019
  原文下载:
  论文解读:
  源码地址:
3.《TAFE-Net: Task-Aware Feature Embeddings for Low Shot Learning》
  网络名称:TAFE-Net
  文章来源:CVPR2019
  原文下载:
  论文解读:
  源码地址:
4.《Baby Steps Towards Few-Shot Learning with Multiple Semantics》
  网络名称:Multiple-Semantics
  文章来源:CVPR2019
  原文下载:
  论文解读:
  源码地址:尚未开源
5.《Semantic Feature Augmentation in Few-shot Learning》
  网络名称:Dual-TriNet
  文章来源:ECCV2018
  原文下载:
  论文解读:
  源码地址:

6.《Learning Compositional Representations for Few-Shot Recognition》
  网络名称:comp
  文章来源:ICCV2019
  原文下载:
  论文解读:
  源码地址:
7.《Few-Shot Image Recognition with Knowledge Transfer》
  网络名称:KTN
  文章来源:ICCV2019
  原文下载:
  论文解读:
  源码地址:尚未开源

六、其他类型的小样本学习算法

1.《Active One-shot Learning》
  网络名称:
  文章来源:NIPS2016
  原文下载:
  论文解读:
  源码地址:尚未开源
2.《Spot and Learn: A Maximum-Entropy Patch Sampler for Few-Shot Image Classification》
  网络名称:
  文章来源:CVPR2019
  原文下载:
  论文解读:
  源码地址:尚未开源
3.《Meta-Learning with Temporal Convolutions》/《A simple neural attentive meta-learner》
  网络名称:TCML/SNAIL
  文章来源:ICLR2018
  原文下载:
  论文解读:
  源码地址:尚未开源
4.《Meta-Transfer Learning for Few-Shot Learning》
  网络名称:MTL
  文章来源:CVPR2019
  原文下载:
  论文解读:
  源码地址:
5.《Learning to propagate labels: Transductive propagation network for few-shot learning》
  网络名称:TPN
  文章来源:ICLR2019
  原文下载:
  论文解读:
  源码地址:尚未开源
6.《Few-Shot Class-Incremental Learning》
  网络名称:TOPIC
  文章来源:CVPR2020
  原文下载:
  论文解读:
  源码地址:尚未开源
7.《Learning to Select Base Classes for Few-shot Classification》
  网络名称:
  文章来源:CVPR2020
  原文下载:
  论文解读:
  源码地址:尚未开源
8.《TransMatch: A Transfer-Learning Scheme for Semi-Supervised Few-Shot Learning》
  网络名称:TransMatch
  文章来源:CVPR2020
  原文下载:
  论文解读:
  源码地址:尚未开源
9.《A closer look at few-shot classification》
  网络名称:CloserLook
  文章来源:ICLR2019
  原文下载:
  论文解读:
  源码地址:
10.《Low-Shot Learning with Imprinted Weights》
  网络名称:Imprinting
  文章来源:CVPR 2018
  原文下载:
  论文解读:
  源码地址:尚未开源
11.《Boosting Few-Shot Visual Learning with Self-Supervision》
  网络名称:
  文章来源:ICCV 2019
  原文下载:
  论文解读:
  源码地址:尚未开源
12.《Diversity with Cooperation: Ensemble Methods for Few-Shot Classification》
  网络名称:Robust-dist
  文章来源:ICCV2019
  原文下载:
  论文解读:
  源码地址:尚未开源
13.《SimpleShot: Revisiting Nearest-Neighbor Classification for Few-Shot Learning》
  网络名称:SimpleShot
  文章来源:
  原文下载:
  论文解读:
  源码地址:
14.《Few-shot Classification via Adaptive Attention》
  网络名称:
  文章来源:
  原文下载:
  论文解读:
  源码地址:尚未开源
15.《Few-Shot Image Recognition by Predicting Parameters from Activations》
  网络名称:PPA
  文章来源:CVPR 2018
  原文下载:
  论文解读:
  源码地址:尚未开源
16.《Generating Classification Weights with GNN Denoising Autoencoders for Few-Shot Learning》
  网络名称:DAE
  文章来源:CVPR2019
  原文下载:
  论文解读:
  源码地址:
17.《Few-Shot Learning Through an Information Retrieval Lens》
  网络名称:mAP-SSVM,mAP-DLM
  文章来源:NIPS2017
  原文下载:
  论文解读:
  源码地址:尚未开源

七、小样本语义分割算法

1.《One-Shot Learning for Semantic Segmentation》
  网络名称:
  文章来源:BMVC2017
  原文下载:
  论文解读:
  源码地址:
2.《Conditional networks for few-shot semantic segmentation》
  网络名称:co-FCN
  文章来源:ICLR2018
  原文下载:
  论文解读:
  源码地址:尚未开源
3.《CANet: Class-Agnostic Segmentation Networks with Iterative Refinement and Attentive Few-Shot Learning》
  网络名称:CANet
  文章来源:CVPR2019
  原文下载:
  论文解读:
  源码地址:尚未开源
4.《PANet: Few-Shot Image Semantic Segmentation with Prototype Alignment》
  网络名称:PANet
  文章来源:ICCV2019
  原文下载:
  论文解读:
  源码地址:尚未开源

八、小样本目标检测算法

1.《LSTD: A Low-Shot Transfer Detector for Object Detection》
  网络名称:LSTD
  文章来源:AAAI2018
  原文下载:
  论文解读:
  源码地址:尚未开源
2.《Few-Example Object Detection with Model Communication》
  网络名称:MSPLD
  文章来源:TPAMI2018
  原文下载:
  论文解读:
  源码地址:尚未开源
3.《Incremental Few-Shot Object Detection》
  网络名称:ONCE
  文章来源:CVPR2020
  原文下载:
  论文解读:
  源码地址:尚未开源
4.《Few-Shot Object Detection with Attention-RPN and Multi-Relation Detector》
  网络名称:
  文章来源:CVPR2020
  原文下载:
  论文解读:
  源码地址:尚未开源
5.《Few-shot Object Detection via Feature Reweighting》
  网络名称:
  文章来源:ICCV2019
  原文下载:
  论文解读:
  源码地址:尚未开源
6.《Meta R-CNN : Towards General Solver for Instance-level Low-shot Learning》
  网络名称:Meta R-CNN
  文章来源:ICCV2019
  原文下载:
  论文解读:
  源码地址:
7.《》
  网络名称:
  文章来源:
  原文下载:
  论文解读:
  源码地址:尚未开源
如果大家对于深度学习与计算机视觉领域感兴趣,希望获得更多的知识分享与最新的论文解读,欢迎关注我的个人公众号“深视”。

上一篇:论文阅读笔记《On First-Order Meta-Learning Algorithms》
下一篇:论文阅读笔记《Task-Agnostic Meta-Learning for Few-shot Learning》

发表评论

最新留言

哈哈,博客排版真的漂亮呢~
[***.90.31.176]2025年04月27日 19时27分45秒