
本文共 15639 字,大约阅读时间需要 52 分钟。
Spring Data Elasticsearch
Elasticsearch提供的Java客户端有一些不太方便的地方:
- 很多地方需要拼接Json字符串,在java中拼接字符串有多恐怖你应该懂的
- 需要自己把对象序列化为json存储
- 查询到结果也需要自己反序列化为对象
因此,这里就不讲解原生的Elasticsearch客户端API了。
而是学习Spring提供的套件:Spring Data Elasticsearch。
1.简介
Spring Data Elasticsearch是Spring Data项目下的一个子模块。
查看 Spring Data的官网:
Spring Data的使命是为数据访问提供熟悉且一致的基于Spring的编程模型,同时仍保留底层数据存储的特殊特性。
它使得使用数据访问技术,关系数据库和非关系数据库,map-reduce框架和基于云的数据服务变得容易。这是一个总括项目,其中包含许多特定于给定数据库的子项目。这些令人兴奋的技术项目背后,是由许多公司和开发人员合作开发的。
Spring Data 的使命是给各种数据访问提供统一的编程接口,不管是关系型数据库(如MySQL),还是非关系数据库(如Redis),或者类似Elasticsearch这样的索引数据库。从而简化开发人员的代码,提高开发效率。
包含很多不同数据操作的模块:
Spring Data Elasticsearch的页面:
特征:
- 支持Spring的基于
@Configuration
的java配置方式,或者XML配置方式 - 提供了用于操作ES的便捷工具类
ElasticsearchTemplate
。包括实现文档到POJO之间的自动智能映射。 - 利用Spring的数据转换服务实现的功能丰富的对象映射
- 基于注解的元数据映射方式,而且可扩展以支持更多不同的数据格式
- 根据持久层接口自动生成对应实现方法,无需人工编写基本操作代码(类似mybatis,根据接口自动得到实现)。当然,也支持人工定制查询
2.创建Demo工程
我们新建一个demo,学习Elasticsearch
pom依赖:
4.0.0 com.leyou.demo elasticsearch 0.0.1-SNAPSHOT jar elasticsearch Demo project for Spring Boot org.springframework.boot spring-boot-starter-parent 2.0.2.RELEASE UTF-8 UTF-8 1.8 org.springframework.boot spring-boot-starter-data-elasticsearch org.springframework.boot spring-boot-starter-test test org.springframework.boot spring-boot-maven-plugin
application.yml文件配置:
spring: data: elasticsearch: cluster-name: elasticsearch cluster-nodes: 192.168.56.101:9300
3.实体类及注解
首先我们准备好实体类:
public class Item { Long id; String title; //标题 String category;// 分类 String brand; // 品牌 Double price; // 价格 String images; // 图片地址}
映射
Spring Data通过注解来声明字段的映射属性,有下面的三个注解:
@Document
作用在类,标记实体类为文档对象,一般有两个属性- indexName:对应索引库名称
- type:对应在索引库中的类型
- shards:分片数量,默认5
- replicas:副本数量,默认1
@Id
作用在成员变量,标记一个字段作为id主键@Field
作用在成员变量,标记为文档的字段,并指定字段映射属性:- type:字段类型,取值是枚举:FieldType
- index:是否索引,布尔类型,默认是true
- store:是否存储,布尔类型,默认是false
- analyzer:分词器名称
示例:
@Document(indexName = "item",type = "docs", shards = 1, replicas = 0)public class Item { @Id private Long id; @Field(type = FieldType.Text, analyzer = "ik_max_word") private String title; //标题 @Field(type = FieldType.Keyword) private String category;// 分类 @Field(type = FieldType.Keyword) private String brand; // 品牌 @Field(type = FieldType.Double) private Double price; // 价格 @Field(index = false, type = FieldType.Keyword) private String images; // 图片地址}
4.Template索引操作
4.1.创建索引和映射
创建索引
ElasticsearchTemplate中提供了创建索引的API:
可以根据类的信息自动生成,也可以手动指定indexName和Settings
映射
映射相关的API:
可以根据类的字节码信息(注解配置)来生成映射,或者手动编写映射
我们这里采用类的字节码信息创建索引并映射:
@RunWith(SpringRunner.class)@SpringBootTest(classes = ItcastElasticsearchApplication.class)public class IndexTest { @Autowired private ElasticsearchTemplate elasticsearchTemplate; @Test public void testCreate(){ // 创建索引,会根据Item类的@Document注解信息来创建 elasticsearchTemplate.createIndex(Item.class); // 配置映射,会根据Item类中的id、Field等字段来自动完成映射 elasticsearchTemplate.putMapping(Item.class); }}
结果:
GET /item{ "item": { "aliases": {}, "mappings": { "docs": { "properties": { "brand": { "type": "keyword" }, "category": { "type": "keyword" }, "images": { "type": "keyword", "index": false }, "price": { "type": "double" }, "title": { "type": "text", "analyzer": "ik_max_word" } } } }, "settings": { "index": { "refresh_interval": "1s", "number_of_shards": "1", "provided_name": "item", "creation_date": "1525405022589", "store": { "type": "fs" }, "number_of_replicas": "0", "uuid": "4sE9SAw3Sqq1aAPz5F6OEg", "version": { "created": "6020499" } } } }}
4.2.删除索引
删除索引的API:
可以根据类名或索引名删除。
示例:
@Testpublic void deleteIndex() { esTemplate.deleteIndex("heima");}
结果:
5.Repository文档操作
Spring Data 的强大之处,就在于你不用写任何DAO处理,自动根据方法名或类的信息进行CRUD操作。只要你定义一个接口,然后继承Repository提供的一些子接口,就能具备各种基本的CRUD功能。
我们只需要定义接口,然后继承它就OK了。
public interface ItemRepository extends ElasticsearchRepository- {}
来看下Repository的继承关系:
我们看到有一个ElasticsearchRepository接口:
5.1.新增文档
@Autowiredprivate ItemRepository itemRepository;@Testpublic void index() { Item item = new Item(1L, "小米手机7", " 手机", "小米", 3499.00, "http://image.leyou.com/13123.jpg"); itemRepository.save(item);}
去页面查询看看:
GET /item/_search
结果:
{ "took": 14, "timed_out": false, "_shards": { "total": 1, "successful": 1, "skipped": 0, "failed": 0 }, "hits": { "total": 1, "max_score": 1, "hits": [ { "_index": "item", "_type": "docs", "_id": "1", "_score": 1, "_source": { "id": 1, "title": "小米手机7", "category": " 手机", "brand": "小米", "price": 3499, "images": "http://image.leyou.com/13123.jpg" } } ] }}
5.2.批量新增
代码:
@Testpublic void indexList() { List- list = new ArrayList<>(); list.add(new Item(2L, "坚果手机R1", " 手机", "锤子", 3699.00, "http://image.leyou.com/123.jpg")); list.add(new Item(3L, "华为META10", " 手机", "华为", 4499.00, "http://image.leyou.com/3.jpg")); // 接收对象集合,实现批量新增 itemRepository.saveAll(list);}
再次去页面查询:
{ "took": 5, "timed_out": false, "_shards": { "total": 1, "successful": 1, "skipped": 0, "failed": 0 }, "hits": { "total": 3, "max_score": 1, "hits": [ { "_index": "item", "_type": "docs", "_id": "2", "_score": 1, "_source": { "id": 2, "title": "坚果手机R1", "category": " 手机", "brand": "锤子", "price": 3699, "images": "http://image.leyou.com/13123.jpg" } }, { "_index": "item", "_type": "docs", "_id": "3", "_score": 1, "_source": { "id": 3, "title": "华为META10", "category": " 手机", "brand": "华为", "price": 4499, "images": "http://image.leyou.com/13123.jpg" } }, { "_index": "item", "_type": "docs", "_id": "1", "_score": 1, "_source": { "id": 1, "title": "小米手机7", "category": " 手机", "brand": "小米", "price": 3499, "images": "http://image.leyou.com/13123.jpg" } } ] }}
5.3.修改文档
修改和新增是同一个接口,区分的依据就是id,这一点跟我们在页面发起PUT请求是类似的。
5.4.基本查询
ElasticsearchRepository提供了一些基本的查询方法:
我们来试试查询所有:
@Testpublic void testFind(){ // 查询全部,并安装价格降序排序 Iterable- items = this.itemRepository.findAll(Sort.by(Sort.Direction.DESC, "price")); items.forEach(item-> System.out.println(item));}
结果:
5.5.自定义方法
Spring Data 的另一个强大功能,是根据方法名称自动实现功能。
比如:你的方法名叫做:findByTitle,那么它就知道你是根据title查询,然后自动帮你完成,无需写实现类。
当然,方法名称要符合一定的约定:
Keyword | Sample | Elasticsearch Query String |
---|---|---|
And | findByNameAndPrice | {"bool" : {"must" : [ {"field" : {"name" : "?"}}, {"field" : {"price" : "?"}} ]}} |
Or | findByNameOrPrice | {"bool" : {"should" : [ {"field" : {"name" : "?"}}, {"field" : {"price" : "?"}} ]}} |
Is | findByName | {"bool" : {"must" : {"field" : {"name" : "?"}}}} |
Not | findByNameNot | {"bool" : {"must_not" : {"field" : {"name" : "?"}}}} |
Between | findByPriceBetween | {"bool" : {"must" : {"range" : {"price" : {"from" : ?,"to" : ?,"include_lower" : true,"include_upper" : true}}}}} |
LessThanEqual | findByPriceLessThan | {"bool" : {"must" : {"range" : {"price" : {"from" : null,"to" : ?,"include_lower" : true,"include_upper" : true}}}}} |
GreaterThanEqual | findByPriceGreaterThan | {"bool" : {"must" : {"range" : {"price" : {"from" : ?,"to" : null,"include_lower" : true,"include_upper" : true}}}}} |
Before | findByPriceBefore | {"bool" : {"must" : {"range" : {"price" : {"from" : null,"to" : ?,"include_lower" : true,"include_upper" : true}}}}} |
After | findByPriceAfter | {"bool" : {"must" : {"range" : {"price" : {"from" : ?,"to" : null,"include_lower" : true,"include_upper" : true}}}}} |
Like | findByNameLike | {"bool" : {"must" : {"field" : {"name" : {"query" : "?*","analyze_wildcard" : true}}}}} |
StartingWith | findByNameStartingWith | {"bool" : {"must" : {"field" : {"name" : {"query" : "?*","analyze_wildcard" : true}}}}} |
EndingWith | findByNameEndingWith | {"bool" : {"must" : {"field" : {"name" : {"query" : "*?","analyze_wildcard" : true}}}}} |
Contains/Containing | findByNameContaining | {"bool" : {"must" : {"field" : {"name" : {"query" : "**?**","analyze_wildcard" : true}}}}} |
In | findByNameIn(Collection<String>names) | {"bool" : {"must" : {"bool" : {"should" : [ {"field" : {"name" : "?"}}, {"field" : {"name" : "?"}} ]}}}} |
NotIn | findByNameNotIn(Collection<String>names) | {"bool" : {"must_not" : {"bool" : {"should" : {"field" : {"name" : "?"}}}}}} |
Near | findByStoreNear | Not Supported Yet ! |
True | findByAvailableTrue | {"bool" : {"must" : {"field" : {"available" : true}}}} |
False | findByAvailableFalse | {"bool" : {"must" : {"field" : {"available" : false}}}} |
OrderBy | findByAvailableTrueOrderByNameDesc | {"sort" : [{ "name" : {"order" : "desc"} }],"bool" : {"must" : {"field" : {"available" : true}}}} |
例如,我们来按照价格区间查询,定义这样的一个方法:
public interface ItemRepository extends ElasticsearchRepository- { /** * 根据价格区间查询 * @param price1 * @param price2 * @return */ List
- findByPriceBetween(double price1, double price2);}
然后添加一些测试数据:
@Testpublic void indexList() { List- list = new ArrayList<>(); list.add(new Item(1L, "小米手机7", "手机", "小米", 3299.00, "http://image.leyou.com/13123.jpg")); list.add(new Item(2L, "坚果手机R1", "手机", "锤子", 3699.00, "http://image.leyou.com/13123.jpg")); list.add(new Item(3L, "华为META10", "手机", "华为", 4499.00, "http://image.leyou.com/13123.jpg")); list.add(new Item(4L, "小米Mix2S", "手机", "小米", 4299.00, "http://image.leyou.com/13123.jpg")); list.add(new Item(5L, "荣耀V10", "手机", "华为", 2799.00, "http://image.leyou.com/13123.jpg")); // 接收对象集合,实现批量新增 itemRepository.saveAll(list);}
不需要写实现类,然后我们直接去运行:
@Testpublic void queryByPriceBetween(){ List- list = this.itemRepository.findByPriceBetween(2000.00, 3500.00); for (Item item : list) { System.out.println("item = " + item); }}
结果:
虽然基本查询和自定义方法已经很强大了,但是如果是复杂查询(模糊、通配符、词条查询等)就显得力不从心了。此时,我们只能使用原生查询。
6.高级查询
6.1.基本查询
先看看基本玩法
@Testpublic void testQuery(){ // 词条查询 MatchQueryBuilder queryBuilder = QueryBuilders.matchQuery("title", "小米"); // 执行查询 Iterable- items = this.itemRepository.search(queryBuilder); items.forEach(System.out::println);}
Repository的search方法需要QueryBuilder参数,elasticSearch为我们提供了一个对象QueryBuilders:
QueryBuilders提供了大量的静态方法,用于生成各种不同类型的查询对象,例如:词条、模糊、通配符等QueryBuilder对象。
结果:
elasticsearch提供很多可用的查询方式,但是不够灵活。如果想玩过滤或者聚合查询等就很难了。
6.2.自定义查询
先来看最基本的match query:
@Testpublic void testNativeQuery(){ // 构建查询条件 NativeSearchQueryBuilder queryBuilder = new NativeSearchQueryBuilder(); // 添加基本的分词查询 queryBuilder.withQuery(QueryBuilders.matchQuery("title", "小米")); // 执行搜索,获取结果 Page- items = this.itemRepository.search(queryBuilder.build()); // 打印总条数 System.out.println(items.getTotalElements()); // 打印总页数 System.out.println(items.getTotalPages()); items.forEach(System.out::println);}
NativeSearchQueryBuilder:Spring提供的一个查询条件构建器,帮助构建json格式的请求体
Page<item>
:默认是分页查询,因此返回的是一个分页的结果对象,包含属性:
- totalElements:总条数
- totalPages:总页数
- Iterator:迭代器,本身实现了Iterator接口,因此可直接迭代得到当前页的数据
- 其它属性:
结果:
6.3.分页查询
利用NativeSearchQueryBuilder
可以方便的实现分页:
@Testpublic void testNativeQuery(){ // 构建查询条件 NativeSearchQueryBuilder queryBuilder = new NativeSearchQueryBuilder(); // 添加基本的分词查询 queryBuilder.withQuery(QueryBuilders.termQuery("category", "手机")); // 初始化分页参数 int page = 0; int size = 3; // 设置分页参数 queryBuilder.withPageable(PageRequest.of(page, size)); // 执行搜索,获取结果 Page- items = this.itemRepository.search(queryBuilder.build()); // 打印总条数 System.out.println(items.getTotalElements()); // 打印总页数 System.out.println(items.getTotalPages()); // 每页大小 System.out.println(items.getSize()); // 当前页 System.out.println(items.getNumber()); items.forEach(System.out::println);}
结果:
可以发现,Elasticsearch中的分页是从第0页开始。
6.4.排序
排序也通用通过NativeSearchQueryBuilder
完成:
@Testpublic void testSort(){ // 构建查询条件 NativeSearchQueryBuilder queryBuilder = new NativeSearchQueryBuilder(); // 添加基本的分词查询 queryBuilder.withQuery(QueryBuilders.termQuery("category", "手机")); // 排序 queryBuilder.withSort(SortBuilders.fieldSort("price").order(SortOrder.DESC)); // 执行搜索,获取结果 Page- items = this.itemRepository.search(queryBuilder.build()); // 打印总条数 System.out.println(items.getTotalElements()); items.forEach(System.out::println);}
结果:
6.聚合
6.1.聚合为桶
桶就是分组,比如这里我们按照品牌brand进行分组:
@Testpublic void testAgg(){ NativeSearchQueryBuilder queryBuilder = new NativeSearchQueryBuilder(); // 不查询任何结果 queryBuilder.withSourceFilter(new FetchSourceFilter(new String[]{""}, null)); // 1、添加一个新的聚合,聚合类型为terms,聚合名称为brands,聚合字段为brand queryBuilder.addAggregation( AggregationBuilders.terms("brands").field("brand")); // 2、查询,需要把结果强转为AggregatedPage类型 AggregatedPage- aggPage = (AggregatedPage
- ) this.itemRepository.search(queryBuilder.build()); // 3、解析 // 3.1、从结果中取出名为brands的那个聚合, // 因为是利用String类型字段来进行的term聚合,所以结果要强转为StringTerm类型 StringTerms agg = (StringTerms) aggPage.getAggregation("brands"); // 3.2、获取桶 List
buckets = agg.getBuckets(); // 3.3、遍历 for (StringTerms.Bucket bucket : buckets) { // 3.4、获取桶中的key,即品牌名称 System.out.println(bucket.getKeyAsString()); // 3.5、获取桶中的文档数量 System.out.println(bucket.getDocCount()); }}
显示的结果:
关键API:
AggregationBuilders
:聚合的构建工厂类。所有聚合都由这个类来构建,看看他的静态方法:
AggregatedPage
:聚合查询的结果类。它是Page<T>
的子接口:
AggregatedPage
在Page
功能的基础上,拓展了与聚合相关的功能,它其实就是对聚合结果的一种封装,大家可以对照聚合结果的JSON结构来看。
而返回的结果都是Aggregation类型对象,不过根据字段类型不同,又有不同的子类表示
我们看下页面的查询的JSON结果与Java类的对照关系:
6.2.嵌套聚合,求平均值
代码:
@Testpublic void testSubAgg(){ NativeSearchQueryBuilder queryBuilder = new NativeSearchQueryBuilder(); // 不查询任何结果 queryBuilder.withSourceFilter(new FetchSourceFilter(new String[]{""}, null)); // 1、添加一个新的聚合,聚合类型为terms,聚合名称为brands,聚合字段为brand queryBuilder.addAggregation( AggregationBuilders.terms("brands").field("brand") .subAggregation(AggregationBuilders.avg("priceAvg").field("price")) // 在品牌聚合桶内进行嵌套聚合,求平均值 ); // 2、查询,需要把结果强转为AggregatedPage类型 AggregatedPage- aggPage = (AggregatedPage
- ) this.itemRepository.search(queryBuilder.build()); // 3、解析 // 3.1、从结果中取出名为brands的那个聚合, // 因为是利用String类型字段来进行的term聚合,所以结果要强转为StringTerm类型 StringTerms agg = (StringTerms) aggPage.getAggregation("brands"); // 3.2、获取桶 List
buckets = agg.getBuckets(); // 3.3、遍历 for (StringTerms.Bucket bucket : buckets) { // 3.4、获取桶中的key,即品牌名称 3.5、获取桶中的文档数量 System.out.println(bucket.getKeyAsString() + ",共" + bucket.getDocCount() + "台"); // 3.6.获取子聚合结果: InternalAvg avg = (InternalAvg) bucket.getAggregations().asMap().get("priceAvg"); System.out.println("平均售价:" + avg.getValue()); }}
结果:
发表评论
最新留言
关于作者
