
POJ - 1328 Radar Installation 贪心
发布日期:2021-05-09 01:46:28
浏览次数:17
分类:博客文章
本文共 2317 字,大约阅读时间需要 7 分钟。
Radar Installation
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 96177 | Accepted: 21378 |
Description
Assume the coasting is an infinite straight line. Land is in one side of coasting, sea in the other. Each small island is a point locating in the sea side. And any radar installation, locating on the coasting, can only cover d distance, so an island in the sea can be covered by a radius installation, if the distance between them is at most d. We use Cartesian coordinate system, defining the coasting is the x-axis. The sea side is above x-axis, and the land side below. Given the position of each island in the sea, and given the distance of the coverage of the radar installation, your task is to write a program to find the minimal number of radar installations to cover all the islands. Note that the position of an island is represented by its x-y coordinates. Figure A Sample Input of Radar Installations
Input
The input consists of several test cases. The first line of each case contains two integers n (1<=n<=1000) and d, where n is the number of islands in the sea and d is the distance of coverage of the radar installation. This is followed by n lines each containing two integers representing the coordinate of the position of each island. Then a blank line follows to separate the cases. The input is terminated by a line containing pair of zeros
Output
For each test case output one line consisting of the test case number followed by the minimal number of radar installations needed. "-1" installation means no solution for that case.
Sample Input
3 21 2-3 12 11 20 20 0
Sample Output
Case 1: 2Case 2: 1
Source
可将点的坐标转为在x轴上对应的位置,然后根据右端对应的值进行排序判断。
#include#include #include using namespace std;struct pos{ double left,right;};bool flag;bool compare(pos a, pos b){ return a.right < b.right;}int main(){ int n; double d; int m = 1; pos a[1005]; while (~scanf("%d %lf", &n, &d)) { if (!n || !d) { break; } int sum = 1; flag = true; double x, y; for (int i = 0; i d) { flag = false; continue; } a[i].left = x - sqrt(d*d - y*y); a[i].right = x + sqrt(d*d - y*y); } if (!flag) { printf("Case %d: -1\n",m); m++; continue; } sort(a, a + n,compare); double temp = a[0].right; for (int i = 1; i < n; i++) { if (temp
发表评论
最新留言
关注你微信了!
[***.104.42.241]2025年04月24日 17时18分16秒
关于作者

喝酒易醉,品茶养心,人生如梦,品茶悟道,何以解忧?唯有杜康!
-- 愿君每日到此一游!
推荐文章
adb通过USB或wifi连接手机
2019-03-11
JDK9-15新特性
2019-03-11
TreeSet、TreeMap
2019-03-11
JVM内存模型
2019-03-11
可变长度参数
2019-03-11
3、条件查询
2019-03-11
cordova打包apk更改图标
2019-03-11
GitHub上传时,项目在已有文档时直接push出现错误解决方案
2019-03-11
文件系统的层次结构
2019-03-11
减少磁盘延迟时间的方法
2019-03-11
vue(渐进式前端框架)
2019-03-11
权值初始化和与损失函数
2019-03-11
vscode设置eslint保存文件时自动修复eslint错误
2019-03-11
Remove Extra one 维护前缀最大最小值
2019-03-11
wgcloud运维监控系统错误:防篡改校验错误次数大于10次,不再上报数据
2019-03-11
Linux操作系统的安装与使用
2019-03-12
C++ 继承 详解
2019-03-12
OSPF多区域
2019-03-12
Docker入门之-镜像(二)
2019-03-12
数据结构——链表(3)
2019-03-12