【计算几何 02】凸包问题(Convex Hull)
发布日期:2021-05-09 00:11:53 浏览次数:20 分类:博客文章

本文共 3407 字,大约阅读时间需要 11 分钟。

引言

首先介绍下什么是凸包?如下图:

在一个二维坐标系中,有若干点杂乱排列着,将最外层的点连接起来构成的凸多边型,它能包含给定的所有的点,这个多边形就是凸包。

实际上可以理解为用一个橡皮筋包含住所有给定点的形态。

凸包用最小的周长围住了给定的所有点。如果一个凹多边形围住了所有的点,它的周长一定不是最小,如下图。根据三角不等式,凸多边形在周长上一定是最优的。

凸包的求法

寻找凸包的算法有很多种,常用的求法有 Graham 扫描法和 Andrew 算法

Graham Scan 算法求凸包

Graham Scan 算法是一种十分简单高效的二维凸包算法,能够在 \(O(nlogn)\) 的时间内找到凸包。

Graham Scan 算法的做法是先确定一个起点(一般是最左边的点和最右边的点),然后一个个点扫过去,如果新加入的点和之前已经找到的点所构成的 "壳" 凸性没有变化,就继续扫,否则就把已经找到的最后一个点删去,再比较凸性,直到凸性不发生变化。分别扫描上下两个 "壳",合并在一起,凸包就找到了。这么说很抽象,我们看图来解释:

先找 "下壳",上下其实是一样的。首先加入两个点 A 和 B。

然后插入第三个点 C,并计算 \(\overrightarrow{AB}×\overrightarrow{BC}\) 的向量积,却发现小于(等于)0,也就是说 \(\overrightarrow{BC}\)\(\overrightarrow{AB}\) 的顺时针方向上。

于是删去 B 点。

按照这样的方法依次扫描,找完 "下壳" 后,再找 "上壳"。

关于扫描的顺序,有坐标序和极角序两种,本文采用前者。坐标序是比较两个点的 x 坐标,小的先被扫描(扫描上凸壳的时候反过来),如果两个点 x 坐标相同,那么就比较 y 坐标,同样的也是小的先被扫描(扫描上凸壳的时候也是反过来)。极角序使用 atan2 函数的返回值进行比较,读者可以自己尝试写下。

下面贴下代码:Graham Scan 算法

struct Point {    double x, y;    Point operator-(Point& p) {        Point t;        t.x = x - p.x;        t.y = y - p.y;        return t;    }    double cross(Point p)  // 向量叉积    {        return x * p.y - p.x * y;    }};bool cmp(Point& p1, Point& p2) {    if (p1.x != p2.x) return p1.x < p2.x;    return p1.y < p2.y;}Point point[1005];  // 无序点int convex[1005];   // 保存组成凸包的点的下标int n;              // 坐标系的无序点的个数int GetConvexHull() {    sort(point, point + n, cmp);    int temp;    int total = 0;    for (int i = 0; i < n; i++)  // 下凸包    {        while (total > 1 &&               (point[convex[total - 1]] - point[convex[total - 2]])                       .cross(point[i] - point[convex[total - 1]]) <= 0)            total--;        convex[total++] = i;    }    temp = total;    for (int i = n - 2; i >= 0; i--)  // 上凸包    {        while (total > temp &&               (point[convex[total - 1]] - point[convex[total - 2]])                       .cross(point[i] - point[convex[total - 1]]) <= 0)            total--;        convex[total++] = i;    }    return total -           1;  // 返回组成凸包的点的个数,实际上多了一个,就是起点,所以组成凸包的点个数是               // total - 1}

Andrew 算法求凸包

首先把所有点以横坐标为第一关键字,纵坐标为第二关键字排序。

显然排序后最小的元素和最大的元素一定在凸包上。而且因为是凸多边形,我们如果从一个点出发逆时针走,轨迹总是“左拐”的,一旦出现右拐,就说明这一段不在凸包上。因此我们可以用一个单调栈来维护上下凸壳。

因为从左向右看,上下凸壳所旋转的方向不同,为了让单调栈起作用,我们首先 升序枚举 求出下凸壳,然后 降序 求出上凸壳。

求凸壳时,一旦发现即将进栈的点( \(P\) )和栈顶的两个点( \(S_1,S_2\) ,其中 \(S_1\) 为栈顶)行进的方向向右旋转,即叉积小于 \(0\)\(\overrightarrow{S_2S_1}\times \overrightarrow{S_1P}<0\) ,则弹出栈顶,回到上一步,继续检测,直到 \(\overrightarrow{S_2S_1}\times \overrightarrow{S_1P}\ge 0\) 或者栈内仅剩一个元素为止。

通常情况下不需要保留位于凸包边上的点,因此上面一段中 \(\overrightarrow{S_2S_1}\times \overrightarrow{S_1P}<0\) 这个条件中的“ \(<\) ”可以视情况改为 \(\le\) ,同时后面一个条件应改为 \(>\)

代码实现
// stk[]是整型,存的是下标// p[]存储向量或点tp = 0;                       //初始化栈std::sort(p + 1, p + 1 + n);  //对点进行排序stk[++tp] = 1;//栈内添加第一个元素,且不更新used,使得1在最后封闭凸包时也对单调栈更新for (int i = 2; i <= n; ++i) {  while (tp >= 2  //下一行*被重载为叉积         && (p[stk[tp]] - p[stk[tp - 1]]) * (p[i] - p[stk[tp]]) <= 0)    used[stk[tp--]] = 0;  used[i] = 1;  // used表示在凸壳上  stk[++tp] = i;}int tmp = tp;  // tmp表示下凸壳大小for (int i = n - 1; i > 0; --i)  if (!used[i]) {    //      ↓求上凸壳时不影响下凸壳    while (tp > tmp && (p[stk[tp]] - p[stk[tp - 1]]) * (p[i] - p[stk[tp]]) <= 0)      used[stk[tp--]] = 0;    used[i] = 1;    stk[++tp] = i;  }for (int i = 1; i <= tp; ++i)  //复制到新数组中去  h[i] = p[stk[i]];int ans = tp - 1;

根据上面的代码,最后凸包上有 \(ans\) 个元素(额外存储了 \(1\) 号点,因此 \(h\) 数组中有 \(ans+1\) 个元素),并且按逆时针方向排序。周长就是

\[\sum_{i=1}^{ans}\left|\overrightarrow{h_ih_{i+1}}\right|\]

参考

上一篇:Problem 330A - Cakeminator (思维)
下一篇:算法学习笔记:卡特兰数

发表评论

最新留言

初次前来,多多关照!
[***.217.46.12]2025年04月25日 10时24分44秒