Nginx源码分析:master/worker工作流程概述
发布日期:2021-07-25 13:04:56 浏览次数:18 分类:技术文章

本文共 20512 字,大约阅读时间需要 68 分钟。

nginx源码分析

nginx-1.11.1参考书籍《深入理解nginx模块开发与架构解析》

Nginx的master与worker工作模式

在生成环境中的Nginx启动模式基本都是以master/worker为主进行启动运行,通过master/worker的工作方式可以利用多核系统的并发处理能力,master主要就是负责与worker进程进行通信,控制并负载每个worker进程的连接处理以达到worker进程的负载均衡,本文就开始分析一下该模式

master的启动过程

信号相关初始化

在Nginx中的工作方式,进程间的通信基于信号的较多,通过信号来实现相关进程的管理工作,在初始化的过程中,有注册了相关信号的初始化。

ngx_signal_t  signals[] = {    { ngx_signal_value(NGX_RECONFIGURE_SIGNAL),      "SIG" ngx_value(NGX_RECONFIGURE_SIGNAL),      "reload",      ngx_signal_handler },                                 // 重新加载信号处理    { ngx_signal_value(NGX_REOPEN_SIGNAL),      "SIG" ngx_value(NGX_REOPEN_SIGNAL),      "reopen",      ngx_signal_handler },                                 // 日志重新打开信号处理    { ngx_signal_value(NGX_NOACCEPT_SIGNAL),      "SIG" ngx_value(NGX_NOACCEPT_SIGNAL),      "",      ngx_signal_handler },    { ngx_signal_value(NGX_TERMINATE_SIGNAL),      "SIG" ngx_value(NGX_TERMINATE_SIGNAL),                // 停止信号      "stop",      ngx_signal_handler },    { ngx_signal_value(NGX_SHUTDOWN_SIGNAL),      "SIG" ngx_value(NGX_SHUTDOWN_SIGNAL),                 // 退出信号      "quit",      ngx_signal_handler },    { ngx_signal_value(NGX_CHANGEBIN_SIGNAL),      "SIG" ngx_value(NGX_CHANGEBIN_SIGNAL),      "",      ngx_signal_handler },    { SIGALRM, "SIGALRM", "", ngx_signal_handler },    { SIGINT, "SIGINT", "", ngx_signal_handler },    { SIGIO, "SIGIO", "", ngx_signal_handler },    { SIGCHLD, "SIGCHLD", "", ngx_signal_handler },    { SIGSYS, "SIGSYS, SIG_IGN", "", SIG_IGN },    { SIGPIPE, "SIGPIPE, SIG_IGN", "", SIG_IGN },    { 0, NULL, "", NULL }};ngx_int_tngx_init_signals(ngx_log_t *log)                                        // 注册相关信号处理函数{    ngx_signal_t      *sig;    struct sigaction   sa;    for (sig = signals; sig->signo != 0; sig++) {                       // 遍历信号列表        ngx_memzero(&sa, sizeof(struct sigaction));                     // 内存清零 sa        sa.sa_handler = sig->handler;                                   // 获取处理的handler        sigemptyset(&sa.sa_mask);                                               if (sigaction(sig->signo, &sa, NULL) == -1) {                   // 设置信号处理#if (NGX_VALGRIND)            ngx_log_error(NGX_LOG_ALERT, log, ngx_errno,                          "sigaction(%s) failed, ignored", sig->signame);#else            ngx_log_error(NGX_LOG_EMERG, log, ngx_errno,                          "sigaction(%s) failed", sig->signame);            return NGX_ERROR;#endif        }    }    return NGX_OK;                                                      // 信号处理成功}

主要是注册了相关的信号处理函数ngx_signal_handler,

voidngx_signal_handler(int signo){    char            *action;    ngx_int_t        ignore;    ngx_err_t        err;    ngx_signal_t    *sig;    ignore = 0;    err = ngx_errno;    for (sig = signals; sig->signo != 0; sig++) {           // 判断信号是否在列表中        if (sig->signo == signo) {                          // 住过找到            break;        }    }    ngx_time_sigsafe_update();                              // 更新时间    action = "";    switch (ngx_process) {                          case NGX_PROCESS_MASTER:    case NGX_PROCESS_SINGLE:        switch (signo) {        case ngx_signal_value(NGX_SHUTDOWN_SIGNAL):         // 判断相关信号并赋值相关标志位            ngx_quit = 1;            action = ", shutting down";            break;        case ngx_signal_value(NGX_TERMINATE_SIGNAL):        case SIGINT:            ngx_terminate = 1;            action = ", exiting";            break;    ...}

信号初始化完成之后,就继续执行master的初始化。

master/worker的初始化

在初始化完成之后,就进入ngx_master_process_cycle的执行,

voidngx_master_process_cycle(ngx_cycle_t *cycle){    char              *title;    u_char            *p;    size_t             size;    ngx_int_t          i;    ngx_uint_t         n, sigio;    sigset_t           set;    struct itimerval   itv;    ngx_uint_t         live;    ngx_msec_t         delay;    ngx_listening_t   *ls;    ngx_core_conf_t   *ccf;    sigemptyset(&set);                                              // 设置信号量处理    sigaddset(&set, SIGCHLD);    sigaddset(&set, SIGALRM);    sigaddset(&set, SIGIO);    sigaddset(&set, SIGINT);    sigaddset(&set, ngx_signal_value(NGX_RECONFIGURE_SIGNAL));    sigaddset(&set, ngx_signal_value(NGX_REOPEN_SIGNAL));    sigaddset(&set, ngx_signal_value(NGX_NOACCEPT_SIGNAL));    sigaddset(&set, ngx_signal_value(NGX_TERMINATE_SIGNAL));    sigaddset(&set, ngx_signal_value(NGX_SHUTDOWN_SIGNAL));    sigaddset(&set, ngx_signal_value(NGX_CHANGEBIN_SIGNAL));    if (sigprocmask(SIG_BLOCK, &set, NULL) == -1) {                 // 设置信号量处理 屏蔽注册的信号        ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno,                      "sigprocmask() failed");    }    sigemptyset(&set);                                              // 清除信号数据    size = sizeof(master_process);    for (i = 0; i < ngx_argc; i++) {        size += ngx_strlen(ngx_argv[i]) + 1;    }    title = ngx_pnalloc(cycle->pool, size);                         // 获取内存    if (title == NULL) {        /* fatal */        exit(2);    }    p = ngx_cpymem(title, master_process, sizeof(master_process) - 1);  // 拷贝进程名称信息    for (i = 0; i < ngx_argc; i++) {        *p++ = ' ';        p = ngx_cpystrn(p, (u_char *) ngx_argv[i], size);    }    ngx_setproctitle(title);                                            // 设置进程名称                        ccf = (ngx_core_conf_t *) ngx_get_conf(cycle->conf_ctx, ngx_core_module);       // 获取配置信息    ngx_start_worker_processes(cycle, ccf->worker_processes,                               NGX_PROCESS_RESPAWN);                        // 启动worker进程    ngx_start_cache_manager_processes(cycle, 0);                            // 启动cache进程    ngx_new_binary = 0;    delay = 0;    sigio = 0;    live = 1;    for ( ;; ) {        if (delay) {                                                        // 是否有过期事件            if (ngx_sigalrm) {                                              // 是否是定时器到期信号                sigio = 0;                delay *= 2;                ngx_sigalrm = 0;                                            // 置零            }            ngx_log_debug1(NGX_LOG_DEBUG_EVENT, cycle->log, 0,                           "termination cycle: %M", delay);            itv.it_interval.tv_sec = 0;                                     // 设置定时器            itv.it_interval.tv_usec = 0;            itv.it_value.tv_sec = delay / 1000;            itv.it_value.tv_usec = (delay % 1000 ) * 1000;            if (setitimer(ITIMER_REAL, &itv, NULL) == -1) {                 // 重新设置定时器                ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno,                              "setitimer() failed");            }        }        ngx_log_debug0(NGX_LOG_DEBUG_EVENT, cycle->log, 0, "sigsuspend");        sigsuspend(&set);                                                   // 阻塞等待信号发生        ngx_time_update();                                                  // 更新时间        ngx_log_debug1(NGX_LOG_DEBUG_EVENT, cycle->log, 0,                       "wake up, sigio %i", sigio);        if (ngx_reap) {            ngx_reap = 0;            ngx_log_debug0(NGX_LOG_DEBUG_EVENT, cycle->log, 0, "reap children");            live = ngx_reap_children(cycle);                                // 有子进程结束检查worker状态        }        if (!live && (ngx_terminate || ngx_quit)) {            ngx_master_process_exit(cycle);                                 // 主进程退出        }        if (ngx_terminate) {                                                // 强制关闭            if (delay == 0) {                delay = 50;            }            if (sigio) {                sigio--;                continue;            }            sigio = ccf->worker_processes + 2 /* cache processes */;            if (delay > 1000) {                ngx_signal_worker_processes(cycle, SIGKILL);               // 超时就强行关闭                 } else {                ngx_signal_worker_processes(cycle,                                       ngx_signal_value(NGX_TERMINATE_SIGNAL));     // 发送终止信号            }            continue;        }        if (ngx_quit) {            ngx_signal_worker_processes(cycle,                                        ngx_signal_value(NGX_SHUTDOWN_SIGNAL));     // 让子进程退出            ls = cycle->listening.elts;            for (n = 0; n < cycle->listening.nelts; n++) {                          // 关闭连接                if (ngx_close_socket(ls[n].fd) == -1) {                    ngx_log_error(NGX_LOG_EMERG, cycle->log, ngx_socket_errno,                                  ngx_close_socket_n " %V failed",                                  &ls[n].addr_text);                }            }            cycle->listening.nelts = 0;                                             // 连接数置空            continue;        }        if (ngx_reconfigure) {                                                      // 重新加载配置            ngx_reconfigure = 0;                                                    // 置位0            if (ngx_new_binary) {                ngx_start_worker_processes(cycle, ccf->worker_processes,                                           NGX_PROCESS_RESPAWN);                ngx_start_cache_manager_processes(cycle, 0);                ngx_noaccepting = 0;                continue;            }            ngx_log_error(NGX_LOG_NOTICE, cycle->log, 0, "reconfiguring");            cycle = ngx_init_cycle(cycle);                                          // 重新初始化配置            if (cycle == NULL) {                cycle = (ngx_cycle_t *) ngx_cycle;                continue;            }            ngx_cycle = cycle;                                                      // 重置该变量            ccf = (ngx_core_conf_t *) ngx_get_conf(cycle->conf_ctx,                                                   ngx_core_module);                // 获取配置文件            ngx_start_worker_processes(cycle, ccf->worker_processes,                                       NGX_PROCESS_JUST_RESPAWN);                   // 开始子进程            ngx_start_cache_manager_processes(cycle, 1);                            // 开启cache            /* allow new processes to start */            ngx_msleep(100);                                                                    live = 1;            ngx_signal_worker_processes(cycle,                                        ngx_signal_value(NGX_SHUTDOWN_SIGNAL));     // 停止已经存在的工作子进程        }        if (ngx_restart) {            ngx_restart = 0;            ngx_start_worker_processes(cycle, ccf->worker_processes,                                       NGX_PROCESS_RESPAWN);                        // 重启            ngx_start_cache_manager_processes(cycle, 0);            live = 1;        }        if (ngx_reopen) {            ngx_reopen = 0;            ngx_log_error(NGX_LOG_NOTICE, cycle->log, 0, "reopening logs");            ngx_reopen_files(cycle, ccf->user);            ngx_signal_worker_processes(cycle,                                        ngx_signal_value(NGX_REOPEN_SIGNAL));       // 重新打开日志文件        }        if (ngx_change_binary) {            ngx_change_binary = 0;            ngx_log_error(NGX_LOG_NOTICE, cycle->log, 0, "changing binary");            ngx_new_binary = ngx_exec_new_binary(cycle, ngx_argv);        }        if (ngx_noaccept) {            ngx_noaccept = 0;            ngx_noaccepting = 1;                                                    // 重置标志位            ngx_signal_worker_processes(cycle,                                         ngx_signal_value(NGX_SHUTDOWN_SIGNAL));     // 给子进程发送信号        }    }}

该函数,主要就是先屏蔽不需要关注的信号,然后通过ngx_start_worker_processes函数启动子进程,启动完子进程之后,就进入for的死循环中,该循环的主要作用就是等待相关信号的发生,等待定时器的事件发生,等待对该进程重启、停止等相关信号操作的事件发生,worker的管理工作都集中于for循环的列表中进行的操作。至此master的主要工作就分析完成。

worker的启动运行

worker进程的启动主要是通过ngx_start_worker_processes该函数开始的,

static voidngx_start_worker_processes(ngx_cycle_t *cycle, ngx_int_t n, ngx_int_t type){    ngx_int_t      i;    ngx_channel_t  ch;    ngx_log_error(NGX_LOG_NOTICE, cycle->log, 0, "start worker processes");    ngx_memzero(&ch, sizeof(ngx_channel_t));                                        // 申请管道空间    ch.command = NGX_CMD_OPEN_CHANNEL;                                              // 打开管道    for (i = 0; i < n; i++) {                                                       // 生成多少个worker进程        ngx_spawn_process(cycle, ngx_worker_process_cycle,                          (void *) (intptr_t) i, "worker process", type);           // 生成worker子进程并设置进程名称        ch.pid = ngx_processes[ngx_process_slot].pid;                               // 获取PID        ch.slot = ngx_process_slot;                                     ch.fd = ngx_processes[ngx_process_slot].channel[0];        ngx_pass_open_channel(cycle, &ch);                                          // 打开管道    }}

此时继续查看ngx_spawn_process来查看子进程的生成过程;

ngx_pid_tngx_spawn_process(ngx_cycle_t *cycle, ngx_spawn_proc_pt proc, void *data,    char *name, ngx_int_t respawn){    u_long     on;    ngx_pid_t  pid;    ngx_int_t  s;    if (respawn >= 0) {                                                 s = respawn;    } else {        for (s = 0; s < ngx_last_process; s++) {                            // 找到ngx_process中一个可用的位置            if (ngx_processes[s].pid == -1) {                break;            }        }        if (s == NGX_MAX_PROCESSES) {                                       // 如果大于最大的则报错            ngx_log_error(NGX_LOG_ALERT, cycle->log, 0,                          "no more than %d processes can be spawned",                          NGX_MAX_PROCESSES);            return NGX_INVALID_PID;        }    }    if (respawn != NGX_PROCESS_DETACHED) {                                  // 相关管道的操作        /* Solaris 9 still has no AF_LOCAL */        if (socketpair(AF_UNIX, SOCK_STREAM, 0, ngx_processes[s].channel) == -1)        {            ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno,                          "socketpair() failed while spawning \"%s\"", name);            return NGX_INVALID_PID;        }        ngx_log_debug2(NGX_LOG_DEBUG_CORE, cycle->log, 0,                       "channel %d:%d",                       ngx_processes[s].channel[0],                       ngx_processes[s].channel[1]);        if (ngx_nonblocking(ngx_processes[s].channel[0]) == -1) {            ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno,                          ngx_nonblocking_n " failed while spawning \"%s\"",                          name);            ngx_close_channel(ngx_processes[s].channel, cycle->log);            return NGX_INVALID_PID;        }        if (ngx_nonblocking(ngx_processes[s].channel[1]) == -1) {            ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno,                          ngx_nonblocking_n " failed while spawning \"%s\"",                          name);            ngx_close_channel(ngx_processes[s].channel, cycle->log);            return NGX_INVALID_PID;        }        on = 1;        if (ioctl(ngx_processes[s].channel[0], FIOASYNC, &on) == -1) {            ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno,                          "ioctl(FIOASYNC) failed while spawning \"%s\"", name);            ngx_close_channel(ngx_processes[s].channel, cycle->log);            return NGX_INVALID_PID;        }        if (fcntl(ngx_processes[s].channel[0], F_SETOWN, ngx_pid) == -1) {            ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno,                          "fcntl(F_SETOWN) failed while spawning \"%s\"", name);            ngx_close_channel(ngx_processes[s].channel, cycle->log);            return NGX_INVALID_PID;        }        if (fcntl(ngx_processes[s].channel[0], F_SETFD, FD_CLOEXEC) == -1) {            ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno,                          "fcntl(FD_CLOEXEC) failed while spawning \"%s\"",                           name);            ngx_close_channel(ngx_processes[s].channel, cycle->log);            return NGX_INVALID_PID;        }        if (fcntl(ngx_processes[s].channel[1], F_SETFD, FD_CLOEXEC) == -1) {            ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno,                          "fcntl(FD_CLOEXEC) failed while spawning \"%s\"",                           name);            ngx_close_channel(ngx_processes[s].channel, cycle->log);            return NGX_INVALID_PID;        }        ngx_channel = ngx_processes[s].channel[1];    } else {        ngx_processes[s].channel[0] = -1;        ngx_processes[s].channel[1] = -1;    }    ngx_process_slot = s;                                                   // 赋值s    pid = fork();                                                           // 生成子进程    switch (pid) {    case -1:        ngx_log_error(NGX_LOG_ALERT, cycle->log, ngx_errno,                      "fork() failed while spawning \"%s\"", name);        ngx_close_channel(ngx_processes[s].channel, cycle->log);        return NGX_INVALID_PID;                                             // 如果出错则返回    case 0:        ngx_pid = ngx_getpid();                                             // 子进程获取pid        proc(cycle, data);                                                  // 执行子进程        break;    default:        break;    }    ngx_log_error(NGX_LOG_NOTICE, cycle->log, 0, "start %s %P", name, pid);    ngx_processes[s].pid = pid;                                             // 父进程获取当前执行的pid    ngx_processes[s].exited = 0;                                            // 是否退出设置为0    if (respawn >= 0) {        return pid;    }    ngx_processes[s].proc = proc;                                           ngx_processes[s].data = data;    ngx_processes[s].name = name;    ngx_processes[s].exiting = 0;    switch (respawn) {    case NGX_PROCESS_NORESPAWN:        ngx_processes[s].respawn = 0;        ngx_processes[s].just_spawn = 0;        ngx_processes[s].detached = 0;        break;    case NGX_PROCESS_JUST_SPAWN:        ngx_processes[s].respawn = 0;        ngx_processes[s].just_spawn = 1;        ngx_processes[s].detached = 0;        break;    case NGX_PROCESS_RESPAWN:        ngx_processes[s].respawn = 1;        ngx_processes[s].just_spawn = 0;        ngx_processes[s].detached = 0;        break;    case NGX_PROCESS_JUST_RESPAWN:        ngx_processes[s].respawn = 1;        ngx_processes[s].just_spawn = 1;        ngx_processes[s].detached = 0;        break;    case NGX_PROCESS_DETACHED:        ngx_processes[s].respawn = 0;        ngx_processes[s].just_spawn = 0;        ngx_processes[s].detached = 1;        break;    }    if (s == ngx_last_process) {        ngx_last_process++;    }    return pid;                                                             // 返回PID}

其中在生成子进程之后,就调用了proc方法来执行子进程的相关操作,此时的proc就是对应的ngx_worker_process_cycle函数;

static voidngx_worker_process_cycle(ngx_cycle_t *cycle, void *data){    ngx_int_t worker = (intptr_t) data;    ngx_process = NGX_PROCESS_WORKER;    ngx_worker = worker;    ngx_worker_process_init(cycle, worker);                     // 初始化    ngx_setproctitle("worker process");                         // 设置进程名称    for ( ;; ) {        if (ngx_exiting) {                                      // 是否退出            ngx_event_cancel_timers();                          // 取消事件定时器            if (ngx_event_timer_rbtree.root == ngx_event_timer_rbtree.sentinel)            {                ngx_log_error(NGX_LOG_NOTICE, cycle->log, 0, "exiting");                ngx_worker_process_exit(cycle);                 // 退出            }        }        ngx_log_debug0(NGX_LOG_DEBUG_EVENT, cycle->log, 0, "worker cycle");        ngx_process_events_and_timers(cycle);                   // 处理请求与连接        if (ngx_terminate) {                                    // 是否终止            ngx_log_error(NGX_LOG_NOTICE, cycle->log, 0, "exiting");            ngx_worker_process_exit(cycle);        }        if (ngx_quit) {                                         // 是否退出            ngx_quit = 0;            ngx_log_error(NGX_LOG_NOTICE, cycle->log, 0,                          "gracefully shutting down");            ngx_setproctitle("worker process is shutting down");            if (!ngx_exiting) {                ngx_exiting = 1;                ngx_close_listening_sockets(cycle);             // 关闭连接                ngx_close_idle_connections(cycle);                          }        }        if (ngx_reopen) {                                       // 重新打开日志文件            ngx_reopen = 0;            ngx_log_error(NGX_LOG_NOTICE, cycle->log, 0, "reopening logs");            ngx_reopen_files(cycle, -1);        }    }}

由该函数可知,此时worker子进程就工作在for循环中,通过调用ngx_process_events_and_timers函数进行请求的处理与事件的处理。worker的工作就此开始运行,后续将进一步分析worker启动过程中的相关初始化与事件处理机制。

总结

本文大致描述了nginx在master/worker工作模式下,master的工作流程的启动与worker工作进程的启动过程,master与worker之间也初始化了管道通信,也注册了信号相关的处理,worker在接受到master相关的信号时会执行相关操作,本文只是简单的描述了启动过程与基本的工作机制,后续还将继续分析。鉴于本人才疏学浅,如有疏漏请批评指正。

转载地址:https://blog.csdn.net/qq_33339479/article/details/89179231 如侵犯您的版权,请留言回复原文章的地址,我们会给您删除此文章,给您带来不便请您谅解!

上一篇:Nginx源码分析:核心数据结构ngx_cycle_t与内存池概述
下一篇:Nginx源码分析:启动流程

发表评论

最新留言

哈哈,博客排版真的漂亮呢~
[***.90.31.176]2024年04月21日 00时24分59秒