欧拉筛(素数筛)
发布日期:2021-05-07 23:28:36 浏览次数:14 分类:精选文章

本文共 1802 字,大约阅读时间需要 6 分钟。

欧拉筛:利用每个最小质因子筛掉合数,并且不会重复筛到。

题:

Goldbach’s conjecture is one of the oldest unsolved problems in number theory and in all of mathematics. It states:

Every even integer, greater than 2, can be expressed as the sum of two primes [1].

Your task is to check whether this conjecture holds for integers up to 10^7.

Input

Input starts with an integer T (≤ 300), denoting the number of test cases.

Each case starts with a line containing an integer n (4 ≤ n ≤ 10^7, n is even).

Output

For each case, print the case number and the number of ways you can express n as sum of two primes. To be more specific, we want to find the number of (a, b) where:

Both a and b are prime,

a + b = n and
a ≤ b.

Sample Input

2
6
4

Sample Output

Case 1: 1
Case 2: 1

Note

[1] An integer is said to be prime, if it is divisible by exactly two different integers. First few primes are {2, 3, 5, 7, 11, 13, …}.

题意:

测试样例t。
输入整数n。
条件:a+b=n并且a<=b并且a、b都是素数。
找出有多少个这样的成立。

#include
using namespace std;const int maxn = 7e6;const int N=1e7+5;long prime[maxn],countnum =0; //prime数组记录素数,countnum记录素数个数 bool p[N]={ false};void isprime() //查找记录2到n的素数 { long long i,j; for(i=2;i<=N;++i) { if(p[i]==false) //如果未被筛过,则为素数 prime[countnum++]=i; for(j=0;j
N) //当要标记的合数超出范围时跳出 break; p[i*prime[j]]=true; //将已经记录的素数的倍数进行标记 if(i%prime[j]==0) break; //当i是prime[j]的整数倍时 //记 m = i / prime[j] //那么 i * prime[j+1] 就可以变为 (m * prime[j+1]) * prime[j] //这说明 i * prime[j+1] 是 prime[j] 的整数倍 //不需要再进行标记(在之后会被 prime[j] * 某个数 标记) //对于 prime[j+2] 及之后的素数同理,直接跳出循环,这样就避免了重复标记。 } }}int main(){ int t,o=0; cin>>t; isprime(); while(t--) { o++; long long n,s=0; cin>>n; for(int i=0;prime[i]<=n/2;++i) { if(p[n-prime[i]]==false) { s++; } } cout<<"Case "<
<<": "<
<
上一篇:线段树(高级二叉树)
下一篇:排列组合

发表评论

最新留言

感谢大佬
[***.8.128.20]2025年03月29日 19时18分32秒