基于STM32F4实现FOC(磁场定向控制)一:电流采样和波形产生
发布日期:2021-05-07 15:55:55 浏览次数:17 分类:原创文章

本文共 17384 字,大约阅读时间需要 57 分钟。

一.ADC的配置问题


1.GPIO初始化配置
开始ADC对应的GPIO口,本驱动程序使用到五个GPIO,分别对应U V W三相电流及母线电压和温度采样,统一配置为模拟输入。
GPIO的配置代码如下:


	  RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA |RCC_AHB1Periph_GPIOC | RCC_AHB1Periph_GPIOB| RCC_AHB1Periph_GPIOD|RCC_AHB1Periph_GPIOE, ENABLE);	  /* Enable GPIOA, GPIOC, GPIOE,GPIOD, AFIO clocks */   RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1, ENABLE);		//84Mhz																							/* Enable ADC1 clock */  RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC2, ENABLE); 		//84																			/* Enable ADC2 clock */  RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1, ENABLE);		//高级定时器 168MHz																						/* Enable TIM1 clock */	//GPIO初始化	//.ADC的GPIO	GPIO_StructInit(&GPIO_InitStructure);  GPIO_InitStructure.GPIO_Pin = RHEOSTAT_ADC1_GPIO_PIN1 | RHEOSTAT_ADC1_GPIO_PIN2| RHEOSTAT_ADC1_GPIO_PIN3;  GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN;  GPIO_Init(RHEOSTAT_ADC1_UVWGPIO_PORT, &GPIO_InitStructure);		GPIO_StructInit(&GPIO_InitStructure);  GPIO_InitStructure.GPIO_Pin = RHEOSTAT_ADC1_GPIO_PIN4 |RHEOSTAT_ADC1_GPIO_PIN5;  GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN;  GPIO_Init(RHEOSTAT_ADC_TEMPVOLTGPIO_PORT, &GPIO_InitStructure);	

2.ADC初始化配置



  1. ADC1和ADC2配置:配置为同步注入模式,设置分频值,关闭DMA。


  2. 为了在电机开始运行前采集到的当前的零飘电流,需要先进行可以采集零飘电流的ADC配置,配置如下: ADC1和ADC2采用相同的配置。 关闭扫描模式 关闭边沿触发 关闭连续转换 数据左对齐 数据设置为12位


  3. 在进行完配置之后如果立即开始采集零漂电流,会出现采样值为0的情况,解决方法时设置微小延时,等待内部校准。


  4. 开始零漂电流的采集:使用ADC1来采集三相电流,先关闭注入通道转换结束中断,防止在采集到零漂电流后进入ADC中断,开始FOC计算。关闭中断后关闭ADC的边沿触发,防止在采集过程中收到别的触发信号。设置ADC1的注入通道的采样对象和周期,开始采集。

    零漂电流:零点漂移(零漂)是直接耦合放大电路中存在的一个特殊问题。所谓零点漂移的是指放大电路在没有输入信号时,用灵敏的直流表测量输出端,也会有变化缓慢的输出电压产生,称为零点漂移现象。零点漂移的信号会在各级放大的电路间传递,经过多级放大后,在输出端成为较大的信号,如果有用信号较弱,存在零点漂移现象的直接耦合放大电路中,漂移电压和有效信号电压会混杂在一起被逐级放大,当漂移电压大小可以和有效信号电压相比时,是很难在输出端分辨出有效信号的电压;在漂移现象严重的情况下,往往会使有效信号“淹没”,使放大电路不能正常工作。


  5. 电机运行状态的电流采集:将ADC1和2配置为运行状态所需要的模式,即ADC1和ADC2的注入通道1分别采集A相电流和B相电流,并在运行中动态调整;通道2分别采集母线电压和温度。同时将触发条件设置为定时器的更新触发,等待电机启动。电机启动后,将触发条件设置为定时器的输出捕获触发,使用定时器1(产生pwm波的定时器)的闲置通道配置为pwm模式,同步定时器产生的pwm波,在合适的点触发ADC。



ADC的配置代码如下:


 ADC_DeInit(); 	  /* ADC1 configuration ------------------------------------------------------*/	ADC_CommonInitStructure.ADC_Mode = ADC_DualMode_InjecSimult;	ADC_CommonInitStructure.ADC_Prescaler =  ADC_Prescaler_Div6 ;	ADC_CommonInitStructure.ADC_DMAAccessMode = ADC_DMAAccessMode_Disabled ;	ADC_CommonInitStructure.ADC_TwoSamplingDelay = ADC_TwoSamplingDelay_5Cycles; //不起作用	ADC_CommonInit(&ADC_CommonInitStructure);  ADC_StructInit(&ADC_InitStructure);																					//注入同步模式    主ADC  ADC_InitStructure.ADC_ScanConvMode = ENABLE;	ADC_InitStructure.ADC_ExternalTrigConvEdge= ADC_ExternalTrigConvEdge_None;               //关闭外部边沿触发  ADC_InitStructure.ADC_ContinuousConvMode = DISABLE;																			//连续转换关闭  ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_T8_CC1;										//不起作用  ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Left;																		//数据左对齐	ADC_InitStructure.ADC_Resolution = ADC_Resolution_12b;	ADC_InitStructure.ADC_NbrOfConversion = 1	;																						  ADC_Init(RHEOSTAT_ADC1, &ADC_InitStructure);	  /* ADC2 Configuration ------------------------------------------------------*/	ADC_InitStructure.ADC_ScanConvMode = ENABLE;	ADC_InitStructure.ADC_ExternalTrigConvEdge= ADC_ExternalTrigConvEdge_None;               //关闭外部边沿触发  ADC_InitStructure.ADC_ContinuousConvMode = DISABLE;																			//连续转换关闭  ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_T8_CC1;										//不起作用  ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Left;																		//数据左对齐	ADC_InitStructure.ADC_Resolution = ADC_Resolution_12b;	ADC_InitStructure.ADC_NbrOfConversion = 1	;																																														  ADC_Init(RHEOSTAT_ADC2, &ADC_InitStructure);	  ADC_Cmd(RHEOSTAT_ADC1, ENABLE);  ADC_Cmd(RHEOSTAT_ADC2, ENABLE);	   while(WaitForAD != 0  )		//计时结束   {
WaitForAD--; } //读取零电流偏移值 由于没有产生PWM波 在此情况下读取零电流值 SVPWM_3ShuntCurrentReadingCalibration(); /* ADC2 Injected conversions configuration */ ADC_InjectedSequencerLengthConfig(RHEOSTAT_ADC2,2); //ADC2的注入通道序列长度配置为2 ADC_InjectedChannelConfig(RHEOSTAT_ADC2, PHASE_A_ADC_CHANNEL, 1, SAMPLING_TIME_CK); //A相 ADC通道6 ADC_InjectedChannelConfig(RHEOSTAT_ADC2, TEMP_FDBK_CHANNEL, 2, SAMPLING_TIME_CK); //温度反馈 ADC通道9 //中断优先级配置 //AD转换中断配置 NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2); //配置优先级小组 4个抢占优先级 4个子优先级 NVIC_InitStructure.NVIC_IRQChannel = Rheostat_ADC_IRQ;//ADC1和ADC2 注入中断 //1和2的中断 NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = ADC_PRE_EMPTION_PRIORITY; //1 NVIC_InitStructure.NVIC_IRQChannelSubPriority = ADC_SUB_PRIORITY; //0 NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; NVIC_Init(&NVIC_InitStructure); //定时器1更新中断 NVIC_InitStructure.NVIC_IRQChannel = Rheostat_TIM_IRQ ; NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = TIM1_UP_PRE_EMPTION_PRIORITY; //1 NVIC_InitStructure.NVIC_IRQChannelSubPriority = TIM1_UP_SUB_PRIORITY; //0 NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; NVIC_Init(&NVIC_InitStructure);}//读取零电流偏移值void SVPWM_3ShuntCurrentReadingCalibration(void){
static u16 bIndex; hPhaseAOffset=0; //三相的偏执电流 hPhaseBOffset=0; hPhaseCOffset=0;static u8 FourAvg = 0; ATemp = 0; BTemp = 0; CTemp = 0; while(WaitForAD != 0 ) //计时结束 {
WaitForAD--; } /* ADC1 Injected group of conversions end interrupt disabling */ ADC_ITConfig(RHEOSTAT_ADC1, ADC_IT_JEOC, DISABLE); //禁止ADC1的注入通道转换结束中断 ADC_ExternalTrigInjectedConvEdgeConfig(ADC1, ADC_ExternalTrigInjecConvEdge_None);// ADC1->CR2 = ADC1->CR2 |= 0x300000;// ADC_ExternalTrigInjectedConvEdgeConfig(RHEOSTAT_ADC1,ADC_ExternalTrigInjecConvEdge_RisingFalling); //上升沿触发 ADC_InjectedSequencerLengthConfig(RHEOSTAT_ADC1,3); //ADC1的注入序列长度配置为3 ADC_InjectedChannelConfig(ADC1, PHASE_A_ADC_CHANNEL,1,SAMPLING_TIME_CK); //配置ADC1的注入通道的采样对象及优先级和周期 ADC_InjectedChannelConfig(ADC1, PHASE_B_ADC_CHANNEL,2,SAMPLING_TIME_CK); ADC_InjectedChannelConfig(ADC1, PHASE_C_ADC_CHANNEL,3,SAMPLING_TIME_CK); ADC_ClearFlag(RHEOSTAT_ADC1, ADC_FLAG_JEOC); //清除ADC1的注入通道转换结束位 ADC_SoftwareStartInjectedConv(RHEOSTAT_ADC1); for(FourAvg = 0;FourAvg < AvgCurNum;FourAvg ++) {
for(bIndex=0; bIndex <NB_CONVERSIONS; bIndex++) //得到地电压 转换16次求和 {
while(!ADC_GetFlagStatus(ADC1,ADC_FLAG_JEOC)) {
} //等待转换结束 ATemp += (ADC_GetInjectedConversionValue(RHEOSTAT_ADC1,ADC_InjectedChannel_1)>>3); //获取ADC1的注入通道1 2 3的值 对应上面的 PHASE_A_ADC_CHANNEL..... BTemp += (ADC_GetInjectedConversionValue(RHEOSTAT_ADC1,ADC_InjectedChannel_2)>>3); //注入组数据采用左对齐,需要右移三位才是真实数据 CTemp += (ADC_GetInjectedConversionValue(RHEOSTAT_ADC1,ADC_InjectedChannel_3)>>3); ADC_ClearFlag(RHEOSTAT_ADC1, ADC_FLAG_JEOC); ADC_SoftwareStartInjectedConv(RHEOSTAT_ADC1); } } hPhaseAOffset = (u16)(ATemp/AvgCurNum); hPhaseBOffset = (u16)(BTemp/AvgCurNum); hPhaseCOffset = (u16)(CTemp/AvgCurNum); SVPWM_InjectedConvConfig(); //配置ADC1采样 }//此功能在对使用的三个ADC通道进行校准后,将ADC1配置为电流读取和温度电压反馈void SVPWM_InjectedConvConfig(void){
/* ADC1 Injected conversions configuration */ ADC_InjectedSequencerLengthConfig(RHEOSTAT_ADC1,2); ADC_InjectedSequencerLengthConfig(RHEOSTAT_ADC2,2); ADC_InjectedChannelConfig(RHEOSTAT_ADC1, PHASE_B_ADC_CHANNEL, 1, SAMPLING_TIME_CK); //配置ADC1采样B相电流的通道 优先级及周期 IB PA4 ADC_InjectedChannelConfig(RHEOSTAT_ADC1, BUS_VOLT_FDBK_CHANNEL, 2, SAMPLING_TIME_CK); //配置母线电压的采样优先级及周期 BUS VOLT PB0 /* ADC1 Injected conversions trigger is TIM1 TRGO */ ADC_ExternalTrigInjectedConvConfig(RHEOSTAT_ADC1,ADC_ExternalTrigInjecConv_T1_TRGO); //trgo 触发 Trgo 是什么 //定时器1的触发信号作为启动注入通道组转换的外部事件 定时器1的updatae ADC_ExternalTrigInjectedConvEdgeConfig(RHEOSTAT_ADC1,ADC_ExternalTrigInjecConvEdge_Falling); //上升沿触发 //与上面对应 ADC_ITConfig(RHEOSTAT_ADC1, ADC_IT_JEOC | ADC_IT_AWD, ENABLE); //使能ADC1的模拟看门狗中断,并开启扫描模式 //使能ADC1的注入通道转换结束中断 并开启规则通道组转换结束后自动的注入通道转换}

3.运行状态下的ADC
在运行状态下,ADC1和ADC2注入通道1的采集对象在不同的扇区会有不同的配置。这是由于三相采样电阻在驱动电路的下桥臂导通时才有电流,为保证能采集的电流,只找导通时间最长的两相,剩余的一相根据基尔霍夫电流定律计算。根据PWM波图像,在第四和第五扇区,采集A相和B相电流;在第一和第六扇区,采集C相和B相电流;在第二和第三扇区,采集A相和C相电流。
电流获取代码如下:


//更新电流Curr_Components SVPWM_3ShuntGetPhaseCurrentValues(void){
Curr_Components Local_Stator_Currents; Curr_Components new_value; Curr_Components result; s32 wAux; u8 count; s32 sum1 = 0; s32 sum2 = 0; int i,j,temp; // printf("bSector = %d\r\n",bSector); switch (bSector) {
//只有在下桥臂导通的时候才能检测电流,选择下桥臂导通时间长的相去检测电流 4 5扇区时 A B相的下桥臂导通时间长 C相导通时间短 不检测C相 case 4: case 5: //Current on Phase C not accessible //C相电流不可获得 wAux = (s32)(hPhaseAOffset)- ((ADC1->JDR1)<<1); //JDR1左移一位表示真实的Q15格式的AD转换值, A相 数据左对齐2^15,为了变成Q15格式,再乘2^15,即左移一位// printf("hPhaseAOffset = %d\r\n",hPhaseAOffset); //Saturation of Ia if (wAux < S16_MIN) {
Local_Stator_Currents.qI_Component1= S16_MIN; //AD转换的下限 } else if (wAux > S16_MAX) {
Local_Stator_Currents.qI_Component1= S16_MAX; //AD转换的上限 } else {
Local_Stator_Currents.qI_Component1= wAux; //转换值即不大于上限 也不小于下限 则直接赋值 } wAux = (s32)(hPhaseBOffset)-((ADC2->JDR1)<<1); //偏执电流-采样值 B相 // Saturation of Ib if (wAux < S16_MIN) {
Local_Stator_Currents.qI_Component2= S16_MIN; } else if (wAux > S16_MAX) /S16_MAX 被修改了 {
Local_Stator_Currents.qI_Component2= S16_MAX; } else {
Local_Stator_Currents.qI_Component2= wAux; } break; case 6: case 1: //printf("hPhaseAOffset = %d\r\n",hPhaseAOffset); wAux = (s32)(hPhaseBOffset)-((ADC1->JDR1)<<1); //B相 //Saturation of Ib if (wAux < S16_MIN) {
Local_Stator_Currents.qI_Component2= S16_MIN; } else if (wAux > S16_MAX) {
Local_Stator_Currents.qI_Component2= S16_MAX; } else {
Local_Stator_Currents.qI_Component2= wAux; } // Ia = -Ic -Ib wAux = ((ADC2->JDR1)<<1)-hPhaseCOffset-Local_Stator_Currents.qI_Component2; //Saturation of Ia if (wAux> S16_MAX) {
Local_Stator_Currents.qI_Component1 = S16_MAX; } else if (wAux <S16_MIN) {
Local_Stator_Currents.qI_Component1 = S16_MIN; } else {
Local_Stator_Currents.qI_Component1 = wAux; } break; case 2: case 3: // Current on Phase B not accessible//printf("hPhaseAOffset = %d\r\n",hPhaseAOffset); wAux = (s32)(hPhaseAOffset)-((ADC1->JDR1)<<1); //Saturation of Ia if (wAux < S16_MIN) {
Local_Stator_Currents.qI_Component1= S16_MIN; } else if (wAux > S16_MAX) {
Local_Stator_Currents.qI_Component1= S16_MAX; } else {
Local_Stator_Currents.qI_Component1= wAux; } // Ib = -Ic-Ia; wAux = ((ADC2->JDR1)<<1) - hPhaseCOffset - Local_Stator_Currents.qI_Component1; // Saturation of Ib if (wAux> S16_MAX) {
Local_Stator_Currents.qI_Component2=S16_MAX; } else if (wAux <S16_MIN) {
Local_Stator_Currents.qI_Component2 = S16_MIN; } else {
Local_Stator_Currents.qI_Component2 = wAux; } break; default: break; } return(Local_Stator_Currents); //返回采样电流 }

二.定时器的配置问题


配置能够产生6路pwm波的定时器,改变定时器的占空比即可控制电机转速或转矩。
1.GPIO初始化配置
需要一个能够产生6路PWM波的高级定时器,定时器1或定时器8,对应6个GPIO口,同时需要一个刹车GPIO,共计需要7个GPIO。配置为复用推挽模式。
代码如下:


GPIO_StructInit(&GPIO_InitStructure);	  GPIO_InitStructure.GPIO_Pin = RHEOSTAT_TIM1_GPIO_PIN1 | RHEOSTAT_TIM1_GPIO_PIN2 | RHEOSTAT_TIM1_GPIO_PIN3  ;  GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF;	GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;	GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL;  GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;  GPIO_Init(RHEOSTAT_TIM1_GPIO_PORT, &GPIO_InitStructure);   //TIM1N  GPIO_InitStructure.GPIO_Pin =  RHEOSTAT_TIM1N_GPIO_PIN1 | RHEOSTAT_TIM1N_GPIO_PIN2 | RHEOSTAT_TIM1N_GPIO_PIN3;  GPIO_Init(RHEOSTAT_TIM1N_GPIO_PORT, &GPIO_InitStructure); 

2.定时器的初始化配置
定时器的初始化代码如下:


		//定时器初始化  TIM_DeInit(TIM1);  TIM_TimeBaseStructInit(&TIM1_TimeBaseStructure);  TIM1_TimeBaseStructure.TIM_Prescaler = PWM_PRSC;						//1																						  TIM1_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_CenterAligned1;        TIM1_TimeBaseStructure.TIM_Period = PWM_PERIOD;		//PWM_PERIOD					 ARR  顶点值		2500						  TIM1_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV2;    //和死区时间计算有关  TIM1_TimeBaseStructure.TIM_RepetitionCounter = REP_RATE;											//溢出2次触发中断  TIM_TimeBaseInit(TIM1, &TIM1_TimeBaseStructure);

3.输出捕获模式的配置
定时器的四个通道都配置为中央对齐模式
代码如下:


//配置TIM的PWM输出  TIM_OCStructInit(&TIM1_OCInitStructure);  TIM1_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1; 														//PWM1             向上计数时cnt<crr有效  TIM1_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;   TIM1_OCInitStructure.TIM_OutputNState = TIM_OutputNState_Enable;                    TIM1_OCInitStructure.TIM_Pulse = 0x505; 												//crr	  TIM1_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_Low; 										//通道低电平有效  TIM1_OCInitStructure.TIM_OCNPolarity = TIM_OCNPolarity_Low;         					//互补通道低电平有效  TIM1_OCInitStructure.TIM_OCIdleState = TIM_OCIdleState_Reset;									//设置输出空闲状态  TIM1_OCInitStructure.TIM_OCNIdleState = LOW_SIDE_POLARITY;          					//reset    TIM_OC1Init(TIM1, &TIM1_OCInitStructure); 																		//配置通道1  TIM_OC2Init(TIM1, &TIM1_OCInitStructure);																			//配置通道2  TIM_OC3Init(TIM1, &TIM1_OCInitStructure);																			//配置通道3  GPIO_StructInit(&GPIO_InitStructure);	  TIM_OC1PreloadConfig(TIM1, TIM_OCPreload_Enable);  TIM_OC2PreloadConfig(TIM1, TIM_OCPreload_Enable);  TIM_OC3PreloadConfig(TIM1, TIM_OCPreload_Enable);		//TIM1通道4的PWM配置  TIM_OCStructInit(&TIM1_OCInitStructure);  TIM1_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM2;    TIM1_OCInitStructure.TIM_OutputState = 	TIM_OutputState_Enable;             //使能主通道  TIM1_OCInitStructure.TIM_OutputNState = TIM_OutputNState_Disable;                    TIM1_OCInitStructure.TIM_Pulse = PWM_PERIOD-1;  //   												// 在PWM波的正中间采样  TIM1_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High; 									//主通道高电平有效	  TIM1_OCInitStructure.TIM_OCNPolarity =TIM_OCNPolarity_Low;         					//互补通道低电平有效   没有用 互补通道关闭  TIM1_OCInitStructure.TIM_OCIdleState = TIM_OCIdleState_Reset;								//主通道输出空闲状态  TIM1_OCInitStructure.TIM_OCNIdleState = LOW_SIDE_POLARITY;            			//互补通道输出空闲状态  TIM_OC4Init(TIM1, &TIM1_OCInitStructure);    TIM_OC4PreloadConfig(TIM1, TIM_OCPreload_Enable);

4.刹车和死区配置
刹车可以通俗的理解为停止产生PWM波,当改变刹车位的电平时,会启动或停止PWM的产生。
死区是为了保证mos开关电路不在同一时刻导通,烧毁电路。
代码如下:


	//刹车和死区配置  TIM1_BDTRInitStructure.TIM_OSSRState = TIM_OSSRState_Enable;							//当定时器不工作时,一旦CCxE=1或CCxNE = 1(即主通道捕获比较或互补捕获比较通道使能),首次开启OC/OCN并输出无效电平,然后置OC/OCN使能输出信号=1	TIM1_BDTRInitStructure.TIM_OSSIState = TIM_OSSIState_Enable;							//当定时器不工作时,一旦主通道或互补通道使能,OC/OCN首先输出其空闲电平,然后OC/OCN使能输出信号=1					  TIM1_BDTRInitStructure.TIM_LOCKLevel = TIM_LOCKLevel_1; 									//锁定级别1,不能写入TIMx_BDTR寄存器的DTG、BKE、BKP、AOE、和TIMx_CR2寄存器的OISx/OISxN位	  TIM1_BDTRInitStructure.TIM_DeadTime = DEADTIME;														//死区   4  TIM1_BDTRInitStructure.TIM_Break = TIM_Break_Disable;											//刹车功能使能  TIM1_BDTRInitStructure.TIM_BreakPolarity = TIM_BreakPolarity_Low;         //刹车输入低电平有效  TIM1_BDTRInitStructure.TIM_AutomaticOutput = TIM_AutomaticOutput_Disable;	//关闭自动输出  只能由软件置1  TIM_BDTRConfig(TIM1, &TIM1_BDTRInitStructure);//设置更新事件为TIM1的TRGO 设置ADC触发为TIM1的TRGO时,即使用TIM1的更新作为触发	TIM_SelectOutputTrigger(TIM1, TIM_TRGOSource_Update);                     //选择定时器1的更新事件被选为触发输入(TRGO)  定时器1位主模式	 	TIM_ClearITPendingBit(TIM1, TIM_IT_Break);																//清除刹车中断标记位  TIM_ITConfig(TIM1, TIM_IT_Break,ENABLE);																	//使能刹车中断  	TIM_Cmd(TIM1, ENABLE);																										//使能定时器1			  // Resynch to have the Update evend during Undeflow  TIM_GenerateEvent(TIM1, TIM_EventSource_Update);		//重新初始化计数器,并产生一个更新事件,注意预分频器的计数器也被清0(但是预分频系数不变!若在中心对称模式下	//或向上计数则计数器被清0,若向下计数则取TIMx_ARR的值。		//Clear Update Flag    TIM_ClearFlag(TIM1, TIM_FLAG_Update);																		//清除中断标志位		TIM_ITConfig(TIM1, TIM_IT_Update, DISABLE);															//关闭更新中断   	  TIM_ITConfig(TIM1, TIM_IT_CC4,DISABLE);																	//关闭捕获/比较中断
上一篇:Linux下网络编程一
下一篇:map的find函数和count函数

发表评论

最新留言

初次前来,多多关照!
[***.217.46.12]2025年03月30日 21时10分15秒