MapReduce天气案例
发布日期:2021-05-06 23:32:57 浏览次数:19 分类:精选文章

本文共 9755 字,大约阅读时间需要 32 分钟。

需求:

1949-10-01 14:21:02	34c1949-10-02 14:01:02	36c1950-01-01 11:21:02	32c1950-10-01 12:21:02	37c1951-12-01 12:21:02	23c1950-10-02 12:21:02	41c1950-10-03 12:21:02	27c1951-07-01 12:21:02	45c1951-07-02 12:21:02	46c1951-07-03 12:21:03	47c

统计每一年的每一个月中的气温最高的前三个,且一年的数据结果输出到一个文件。

需求分析:

分组这里还会用到比较器,要按照年、月分组,因此这个自定义KEY比较复杂了就,包含了年、月、温度。

案例实现:

在MR过程中Key往往用于分组或排序,当hadoop内置的key键的数据类型不能满足需求时,就需要自定义key了。接下来马上先定义一个键。

1.自定义Key

我们以前自定义的Mapper类中碰见最多的键是Text,来参考一下:public class Text extends BinaryComparable implements WritableComparable。他的类实现了一个接口WritableComparable。根据上面的注释:

Example:

*

 *     public class MyWritableComparable implements WritableComparable
{ * // Some data * private int counter; * private long timestamp; * * public void write(DataOutput out) throws IOException { * out.writeInt(counter); * out.writeLong(timestamp); * } * * public void readFields(DataInput in) throws IOException { * counter = in.readInt(); * timestamp = in.readLong(); * } * * public int compareTo(MyWritableComparable o) { * int thisValue = this.value; * int thatValue = o.value; * return (thisValue < thatValue ? -1 : (thisValue==thatValue ? 0 : 1)); * } * * public int hashCode() { * final int prime = 31; * int result = 1; * result = prime * result + counter; * result = prime * result + (int) (timestamp ^ (timestamp >>> 32)); * return result * } * } *

这里要提两个接口:Writable接口和WritableComparable接口。在MR最终实现Writable接口的类可以是值,而实现WritableComparable接口的类可以是键,也可以是值。我自己可以定义一个MyWritableComparable来实现这个接口。这个接口继承了两个接口,writable接口定义了序列化和反序列化,compareable就负责比较。

spill to disk的过程中,调用快排算法的时候会调用比较器,优先调用户自定义比较器,其次才是KEY自己的比较器。把“温度”放到KEY里面去比较,比较合适(根据需求)。并且,有可能会用到分组来做聚合,分组得用“年-月”来分组,聚合的时候把数据按照分组聚合。

package com.husky.hadoop.weather;import java.io.DataInput;import java.io.DataOutput;import java.io.IOException;import org.apache.hadoop.io.WritableComparable;public class MyKey implements WritableComparable
{ private int year; private int month; private double temperature; public MyKey() { super(); } public MyKey(int year, int month, double temperature) { super(); this.year = year; this.month = month; this.temperature = temperature; } public int getYear() { return year; } public void setYear(int year) { this.year = year; } public int getMonth() { return month; } public void setMonth(int month) { this.month = month; } public double getTemperature() { return temperature; } public void setTemperature(double temperature) { this.temperature = temperature; } /** * 把对象写到流里面去,就是序列化和反序列化 * */ @Override public void write(DataOutput out) throws IOException { out.writeInt(year); out.writeInt(month); out.writeDouble(temperature); } /** * 把对象从输入流里面读出来 * */ @Override public void readFields(DataInput in) throws IOException { this.year=in.readInt(); this.month=in.readInt(); this.temperature=in.readDouble(); } /** * 当前key的比较方法,在排序时调用。返回0、正数、负数 * 不能只比较温度,必须得在年月相同的情况下,再去比较温度 * */ @Override public int compareTo(MyKey o) { int r1 = Integer.compare(this.getYear(), o.getYear()); if (r1==0) { int r2 = Integer.compare(this.getMonth(), o.getMonth()); if (r2==0) { //降序排序 return -Double.compare(this.getTemperature(), o.getTemperature()); } return r2; } return r1; }}

2.Mapper类

map是先读取一行数据,1949-10-01 14:21:02 34c ——> MyKey(1949,10,36):Text

K-V默认用的是偏移量和读取的一条记录,用到的是FileInputFormat,但是我们可以换掉。用KeyValueTextInputFormat,它用到的是KeyValueLineRecordReader:

public class KeyValueTextInputFormat extends FileInputFormat
{ @Override protected boolean isSplitable(JobContext context, Path file) { final CompressionCodec codec = new CompressionCodecFactory(context.getConfiguration()).getCodec(file); if (null == codec) { return true; } return codec instanceof SplittableCompressionCodec; } public RecordReader
createRecordReader(InputSplit genericSplit, TaskAttemptContext context) throws IOException { context.setStatus(genericSplit.toString()); return new KeyValueLineRecordReader(context.getConfiguration()); }}

看一下KeyValueLineRecordReader的一个关键方法setKeyValue:

public static void setKeyValue(Text key, Text value, byte[] line,      int lineLen, int pos) {       if (pos == -1) {         key.set(line, 0, lineLen);      value.set("");    } else {         key.set(line, 0, pos);      value.set(line, pos + 1, lineLen - pos - 1);    }  }

pos==-1表示没有制表符,就把整个一行都作为key,把value set(“”)。否则,制表符前的key(1949-10-01 14:21:02),后面为value(34c)。所以KEYIN就是Text

package com.husky.hadoop.weather;import java.io.IOException;import java.text.ParseException;import java.text.SimpleDateFormat;import java.util.Calendar;import java.util.Date;import org.apache.hadoop.io.Text;import org.apache.hadoop.mapreduce.Mapper;public class WeatherMapper extends Mapper
{ static SimpleDateFormat sdf=new SimpleDateFormat("yyyy-MM-dd");//得到时间对象 @Override protected void map(Text key, Text value, Context context) throws IOException, InterruptedException { //KEY:1949-10-01 14:21:02 ;VALUE:36C try { //根据时间对象去把年、月取出来 Date date = sdf.parse(key.toString()); Calendar c = Calendar.getInstance();//下面继续拿年和月 c.setTime(date); int year = c.get(Calendar.YEAR);//拿出year int month = c.get(Calendar.MONTH);//拿出month //把34C切割,拿出34 double temperature = Double.parseDouble(value.toString().substring(0, value.toString().length()-1)); MyKey outkey = new MyKey(year,month,temperature); Text outvalue = new Text(key+"\t"+value); context.write(outkey, outvalue); } catch (ParseException e) { // TODO Auto-generated catch block e.printStackTrace(); } }}

3.自定义分区类

一条记录经过Map之后,K-V要打上P的标签明确自己未来要去哪个分区。很明显这里不能根据value的值来确定分区号,必须得根据year来确定分区号:

package com.husky.hadoop.weather;import org.apache.hadoop.io.Text;import org.apache.hadoop.mapreduce.Partitioner;//从Mapper出来的数据类型就是
public class MyPartitioner extends Partitioner
{ @Override public int getPartition(MyKey key, Text value, int numPartitions) { // TODO Auto-generated method stub return key.getYear()%numPartitions;//分区的数量就是reduce的数量,这里是3 }}

4.自定义分组比较器

根据年月分组,此时已经排好序了,因此温度就不用再考虑了。只需要管年月并进行分组就可以了。自定义分组比较器一定有构造方法,并提供比较方法

package com.husky.hadoop.weather;import org.apache.hadoop.io.WritableComparable;import org.apache.hadoop.io.WritableComparator;public class MyGroupCompareTo extends WritableComparator{   		//构造方法	public MyGroupCompareTo(){   		super(MyKey.class,true);//指定类,告诉它用哪个类比较,true表示是否构造当前对象	}	public int compare(WritableComparable a,WritableComparable b){   		//类型强转		MyKey k1 = (MyKey)a;		MyKey k2 = (MyKey)b;				//先比较年,后比较月,得到结果直接return		int r1 = Integer.compare(k1.getYear(), k2.getYear());		if (r1==0) {   			return Integer.compare(k1.getMonth(), k2.getMonth());//返回0		}		return r1;//返回非0			}}

5.自定义Reducer类

数据经过分组,就可以流入Reducer中了。Reducer的输入,就是Mapper的输出,所以KEYIN为MyKey,VALUEIN为Text。反观Reducer的输出就很自由了,KEYOUT可以是Text,也可以是NullWritable,VALUEOUT也是如此。我们传入Reducer的是一整坨数据“1949-10-01 14:21:02 34c”

package com.husky.hadoop.weather;import java.io.IOException;import org.apache.hadoop.io.NullWritable;import org.apache.hadoop.io.Text;import org.apache.hadoop.mapreduce.Reducer;public class WeatherReducer extends Reducer
{ @Override protected void reduce(MyKey key, Iterable
iter, Context context) throws IOException, InterruptedException { int num = 0; for(Text value : iter){ if (num>=3) { break; } //key:1950-10-02 12:21:02 41c;value为null。反过来也行,我想咋滴就咋滴 context.write(value, NullWritable.get());//输出 num++; } }}

6.Client客户端类

在提交Job任务之前,需要对分组比较器、输入格式化类、分区器作出设置

package com.husky.hadoop.weather;import org.apache.hadoop.conf.Configuration;import org.apache.hadoop.fs.FileSystem;import org.apache.hadoop.fs.Path;import org.apache.hadoop.io.Text;import org.apache.hadoop.mapreduce.Job;import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;import org.apache.hadoop.mapreduce.lib.input.KeyValueTextInputFormat;import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;import com.husky.hadoop.wc.MyMapper;import com.husky.hadoop.wc.MyReducer;import com.husky.hadoop.wc.MyWC;public class RunJob {   	public static void main(String[] args) {   	客户端自动读取配置文件,并把配置信息加载到conf对象中			Configuration conf = new Configuration(true);						try {   				//job				Job job = Job.getInstance(conf);				FileSystem fs = FileSystem.get(conf);								//必须要配置的,入口类				job.setJarByClass(RunJob.class);				//设置job name				job.setJobName("weather");								//设置Mapper和Reducer				job.setMapperClass(WeatherMapper.class);				job.setReducerClass(WeatherReducer.class);								//设置分组比较器				job.setGroupingComparatorClass(MyGroupCompareTo.class);				//弃用FileInputFormat,改用KeyValueTextInputFormat				job.setInputFormatClass(KeyValueTextInputFormat.class);								//指定自定义分区类				job.setPartitionerClass(MyPartitioner.class);								//设置输出的K-V类型				job.setOutputKeyClass(MyKey.class);				job.setOutputValueClass(Text.class);						//设置reduce的数量,默认1				job.setNumReduceTasks(3);								//设置计算输入数据,path就是hdfs上的文件路径				FileInputFormat.addInputPath(job, new Path("/input/weather"));				//设置计算输出目录,最后的计算结果要在这该目录中				Path outPath = new Path("/output/weather/");//该目录必须不存在,否则计算容易出错				if (fs.exists(outPath)) {    //如果目录存在就删除					fs.delete(outPath,true);				}								FileOutputFormat.setOutputPath(job, outPath);								//开始执行				boolean f = job.waitForCompletion(true);				if (f) {   					System.out.println("MapReduce程序执行成功!");				}			} catch (Exception e) {   				// TODO: handle exception			}	}}

执行结果

根据年来定义的分区数量,其中一个的结果为:

1950-01-01 11:21:02	32c1950-10-02 12:21:02	41c1950-10-01 12:21:02	37c1950-10-03 12:21:02	27c
上一篇:一篇文章搞懂fof好友推荐案例
下一篇:从源码的角度分析MapReduce的map-input流程

发表评论

最新留言

感谢大佬
[***.8.128.20]2025年04月18日 16时11分19秒