
DQN CartPole例子算法改良
发布日期:2021-05-06 22:02:08
浏览次数:40
分类:原创文章
本文共 4467 字,大约阅读时间需要 14 分钟。
原帖地址:
通过增加奖励reward,在100轮左右就可以稳定坚持999了
# -*- coding: utf-8 -*-import randomimport gymimport numpy as npfrom collections import dequefrom keras.models import Sequentialfrom keras.layers import Densefrom keras.optimizers import Adamfrom keras import backend as Kimport tensorflow as tfEPISODES = 5000class DQNAgent: def __init__(self, state_size, action_size): self.state_size = state_size self.action_size = action_size self.memory = deque(maxlen=2000) self.gamma = 0.99 # discount rate self.epsilon = 1.0 # exploration rate self.epsilon_min = 0.001 self.epsilon_decay = 0.001 self.learning_rate = 0.001 self.model = self._build_model() self.target_model = self._build_model() self.update_target_model() """Huber loss for Q Learning References: https://en.wikipedia.org/wiki/Huber_loss https://www.tensorflow.org/api_docs/python/tf/losses/huber_loss """ def _huber_loss(self, y_true, y_pred, clip_delta=1.0): error = y_true - y_pred cond = K.abs(error) <= clip_delta squared_loss = 0.5 * K.square(error) quadratic_loss = 0.5 * K.square(clip_delta) + clip_delta * (K.abs(error) - clip_delta) return K.mean(tf.where(cond, squared_loss, quadratic_loss)) def _build_model(self): # Neural Net for Deep-Q learning Model model = Sequential() model.add(Dense(24, input_dim=self.state_size, activation='relu')) model.add(Dense(24, activation='relu')) model.add(Dense(self.action_size, activation='linear')) model.compile(loss=self._huber_loss, optimizer=Adam(lr=self.learning_rate)) return model def update_target_model(self): # copy weights from model to target_model self.target_model.set_weights(self.model.get_weights()) def remember(self, state, action, reward, next_state, done): self.memory.append((state, action, reward, next_state, done)) def act(self, state): if np.random.rand() <= self.epsilon: return random.randrange(self.action_size) act_values = self.model.predict(state) # print(act_values, state) return np.argmax(act_values[0]) # returns action def replay(self, batch_size): minibatch = random.sample(self.memory, batch_size) for state, action, reward, next_state, done in minibatch: target = self.model.predict(state) if done: target[0][action] = reward else: # a = self.model.predict(next_state)[0] t = self.target_model.predict(next_state)[0] target[0][action] = reward + self.gamma * np.amax(t) # target[0][action] = reward + self.gamma * t[np.argmax(a)] self.model.fit(state, target, epochs=1, verbose=0) if self.epsilon > self.epsilon_min: self.epsilon -= self.epsilon_decay def load(self, name): self.model.load_weights(name) def save(self, name): self.model.save_weights(name)if __name__ == "__main__": env = gym.make('CartPole-v1') state_size = env.observation_space.shape[0] action_size = env.action_space.n agent = DQNAgent(state_size, action_size) # agent.load("./save/cartpole-ddqn.h5") done = False batch_size = 32 for e in range(EPISODES): state = env.reset() state = np.reshape(state, [1, state_size]) for time in range(1000): # env.render() action = agent.act(state) next_state, reward, done, _ = env.step(action) # print(action, state_angency, next_state) if not done: reward = reward elif time == 999: reward = reward else: reward = reward - 10 if abs(next_state[0]) < 0.2: reward += 1 if abs(next_state[2]) < 0.02: reward += 1 next_state = np.reshape(next_state, [1, state_size]) agent.remember(state, action, reward, next_state, done) state = next_state if done: agent.update_target_model() print("episode: {}/{}, score: {}, e: {:.2}" .format(e, EPISODES, time, agent.epsilon)) break if len(agent.memory) > batch_size: agent.replay(batch_size) # if e % 10 == 0: # agent.save("./save/cartpole-ddqn.h5")