
本文共 6777 字,大约阅读时间需要 22 分钟。
和TensorFlow对应的是Theano,Torch;
Caffe专精于图像处理,Caffe方便,更快入门上手; 在通用的DL task上,Caffe不如Theano。 CNN(卷积神经网络)、RNN(循环神经网络)、DNN(深度神经网络)开发环境搭建:
一、没有GPU
learning@learning-virtual-machine:~$ lspci | grep -i nvidia learning@learning-virtual-machine:~$
二、ubuntu版本
learning@learning-virtual-machine:~$ uname -m && cat /etc/*releasex86_64DISTRIB_ID=UbuntuDISTRIB_RELEASE=15.10DISTRIB_CODENAME=wilyDISTRIB_DESCRIPTION="Ubuntu 15.10"NAME="Ubuntu"VERSION="15.10 (Wily Werewolf)"ID=ubuntuID_LIKE=debianPRETTY_NAME="Ubuntu 15.10"VERSION_ID="15.10"HOME_URL="http://www.ubuntu.com/"SUPPORT_URL="http://help.ubuntu.com/"BUG_REPORT_URL="http://bugs.launchpad.net/ubuntu/"learning@learning-virtual-machine:~$
三、gcc
learning@learning-virtual-machine:~$ gcc --version gcc.real (Ubuntu 5.2.1-22ubuntu2) 5.2.1 20151010Copyright (C) 2015 Free Software Foundation, Inc.This is free software; see the source for copying conditions. There is NOwarranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.learning@learning-virtual-machine:~$
四、安装依赖库
learning@learning-virtual-machine:~$ sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libhdf5-serial-dev protobuf-compiler[sudo] password for learning: Reading package lists... DoneBuilding dependency tree
sudo apt-get install --no-install-recommends libboost-all-dev
sudo apt-get install libatlas-base-dev
五、安装python
六、安装Opencv
安装Opencv
七、安装依赖库
learning@learning-virtual-machine:~$ sudo apt-get install libgflags-dev libgoogle-glog-dev liblmdb-dev [sudo] password for learning: Reading package lists… Done八、下载Caffe
learning@learning-virtual-machine:~$ git clone git://github.com/BVLC/caffe.gitCloning into 'caffe'...remote: Counting objects: 34637, done.Receiving objects: 100% (34637/34637), 47.81 MiB | 81.00 KiB/s, done.remote: Total 34637 (delta 0), reused 0 (delta 0), pack-reused 34636Resolving deltas: 100% (23287/23287), done.Checking connectivity... done.
九、修改
Makefile 修改:
LIBRARIES += glog gflags protobuf boost_system boost_filesystem m hdf5_serial_hl hdf5_serial opencv_core opencv_highgui opencv_imgproc opencv_imgcodecs这一块代码不需要修改
修改处:
caffe/examples/cpp_classification/classification.cpp文件十、编译
learning@learning-virtual-machine:~/caffe$ cp Makefile.config.example Makefile.configlearning@learning-virtual-machine:~/caffe$ lscaffe.cloc data INSTALL.md matlab srccmake docker LICENSE models toolsCMakeLists.txt docs Makefile pythonCONTRIBUTING.md examples Makefile.config README.mdCONTRIBUTORS.md include Makefile.config.example scriptslearning@learning-virtual-machine:~/caffe$
learning@learning-virtual-machine:~/caffe$ gedit Makefile.config
learning@learning-virtual-machine:~/caffe$ make all
出现问题:learning@learning-virtual-machine:~/caffe$ make allPROTOC src/caffe/proto/caffe.protoCXX .build_release/src/caffe/proto/caffe.pb.ccCXX src/caffe/data_transformer.cppCXX src/caffe/common.cppCXX src/caffe/internal_thread.cppCXX src/caffe/blob.cppCXX src/caffe/data_reader.cppCXX src/caffe/parallel.cppCXX src/caffe/util/hdf5.cppIn file included from src/caffe/util/hdf5.cpp:1:0:./include/caffe/util/hdf5.hpp:6:18: fatal error: hdf5.h: No such file or directorycompilation terminated.Makefile:572: recipe for target '.build_release/src/caffe/util/hdf5.o' failedmake: *** [.build_release/src/caffe/util/hdf5.o] Error 1learning@learning-virtual-machine:~/caffe$
解决:
Makefile.config INCLUDE_DIRS /usr/include/hdf5/serial/ Makefile LIBRARIES hdf5_hl and hdf5 改为 hdf5_serial_hl ,hdf5_serial出现问题:
LD -o .build_release/lib/libcaffe.so.1.0.0-rc3CXX tools/finetune_net.cppCXX/LD -o .build_release/tools/finetune_net.binCXX tools/net_speed_benchmark.cppCXX/LD -o .build_release/tools/net_speed_benchmark.binCXX tools/compute_image_mean.cppCXX/LD -o .build_release/tools/compute_image_mean.bin.build_release/lib/libcaffe.so: undefined reference to `cv::imread(cv::String const&, int)'.build_release/lib/libcaffe.so: undefined reference to `cv::imencode(cv::String const&, cv::_InputArray const&, std::vector>&, std::vector
解决方法:
Makefile 修改: LIBRARIES += glog gflags protobuf boost_system boost_filesystem m hdf5_serial_hl hdf5_serial opencv_core opencv_highgui opencv_imgproc opencv_imgcodecs编译成功:
make test
make runtest
[----------] 2 tests from BatchReindexLayerTest/0, where TypeParam = caffe::CPUDevice[ RUN ] BatchReindexLayerTest/0.TestForward[ OK ] BatchReindexLayerTest/0.TestForward (0 ms)[ RUN ] BatchReindexLayerTest/0.TestGradient[ OK ] BatchReindexLayerTest/0.TestGradient (373 ms)[----------] 2 tests from BatchReindexLayerTest/0 (374 ms total)[----------] Global test environment tear-down[==========] 1058 tests from 146 test cases ran. (134225 ms total)[ PASSED ] 1058 tests.learning@learning-virtual-machine:~/caffe$
十一、配置pycaffe
sudo apt-get install python-numpy python-scipy python-matplotlib python-sklearn python-skimage python-h5py python-protobuf python-leveldb python-networkx python-nose python-pandas python-gflags Cython ipython
sudo apt-get install protobuf-c-compiler protobuf-compiler
learning@learning-virtual-machine:~/caffe$ make pycaffe
learning@learning-virtual-machine:~/caffe$ make pycaffeCXX/LD -o python/caffe/_caffe.so python/caffe/_caffe.cpptouch python/caffe/proto/__init__.pyPROTOC (python) src/caffe/proto/caffe.protolearning@learning-virtual-machine:~/caffe$
sudo gedit /etc/profile
末尾添加: export PYTHONPATH=/path/to/caffe/python:$PYTHONPATH 用完整路径 source /etc/profilelearning@learning-virtual-machine:~/caffe$ python
Python 2.7.10 (default, Oct 14 2015, 16:09:02) [GCC 5.2.1 20151010] on linux2 Type “help”, “copyright”, “credits” or “license” for more information. .>>>出现问题:
.>>> import caffeTraceback (most recent call last): File "", line 1, in ImportError: No module named caffe
解决方法:
sudo gedit /etc/profile export PYTHONPATH=$PYTHONPATH:/home/learning/caffe/python source /etc/profile补充:baidu解释
Python(英国发音:/ˈpaɪθən/ 美国发音:/ˈpaɪθɑːn/), 是一种面向对象、解释型计算机程序设计语言,由Guido van Rossum于1989年发明,第一个公开发行版发行于1991年。 Python是纯粹的自由软件, 源代码和解释器CPython遵循 GPL(GNU General Public License)协议[1] 。 Python语法简洁清晰,特色之一是强制用空白符(white space)作为语句缩进。 Python具有丰富和强大的库。它常被昵称为胶水语言,能够把用其他语言制作的各种模块(尤其是C/C++)很轻松地联结在一起。常见的一种应用情形是,使用Python快速生成程序的原型(有时甚至是程序的最终界面),然后对其中[2] 有特别要求的部分,用更合适的语言改写,比如3D游戏中的图形渲染模块,性能要求特别高,就可以用C/C++重写,而后封装为Python可以调用的扩展类库。需要注意的是在您使用扩展类库时可能需要考虑平台问题,某些可能不提供跨平台的实现。参考资料:Ubuntu14.04 安装Caffe
发表评论
最新留言
关于作者
