
TensorFlow 研究实践二
发布日期:2021-05-06 19:00:11
浏览次数:21
分类:技术文章
本文共 9901 字,大约阅读时间需要 33 分钟。
学习文献资料:《TensorFlow 官方文档中文版 - v1.2》摘录
训练 TensorFlow 神经网络模型:
learning@learning-virtual-machine:~/tensorflow/tensorflow/models/image/mnist$ python convolutional.pySuccessfully downloaded train-images-idx3-ubyte.gz 9912422 bytes.Successfully downloaded train-labels-idx1-ubyte.gz 28881 bytes.Successfully downloaded t10k-images-idx3-ubyte.gz 1648877 bytes.Successfully downloaded t10k-labels-idx1-ubyte.gz 4542 bytes.Extracting data/train-images-idx3-ubyte.gzExtracting data/train-labels-idx1-ubyte.gzExtracting data/t10k-images-idx3-ubyte.gzExtracting data/t10k-labels-idx1-ubyte.gzInitialized!Step 0 (epoch 0.00), 23.9 msMinibatch loss: 12.053, learning rate: 0.010000Minibatch error: 90.6%Validation error: 84.6%Step 100 (epoch 0.12), 2406.9 msMinibatch loss: 3.306, learning rate: 0.010000Minibatch error: 6.2%Validation error: 7.1%
……………
Step 8100 (epoch 9.43), 1906.4 msMinibatch loss: 1.626, learning rate: 0.006302Minibatch error: 0.0%Validation error: 0.8%Step 8200 (epoch 9.54), 1771.1 msMinibatch loss: 1.625, learning rate: 0.006302Minibatch error: 0.0%Validation error: 0.8%Step 8300 (epoch 9.66), 1783.0 msMinibatch loss: 1.612, learning rate: 0.006302Minibatch error: 0.0%Validation error: 0.8%Step 8400 (epoch 9.77), 2009.2 msMinibatch loss: 1.595, learning rate: 0.006302Minibatch error: 0.0%Validation error: 0.7%Step 8500 (epoch 9.89), 1988.8 msMinibatch loss: 1.595, learning rate: 0.006302Minibatch error: 0.0%Validation error: 0.8%Test error: 0.8%learning@learning-virtual-machine:~/tensorflow/tensorflow/models/image/mnist$
……………
使用TensorFlow
learning@learning-virtual-machine:~/tensorflow/tensorflow/models/image/imagenet$ python classify_image.py>> Downloading inception-2015-12-05.tgz 100.0%Succesfully downloaded inception-2015-12-05.tgz 88931400 bytes.
……
W tensorflow/core/framework/op_def_util.cc:320] Op is deprecated. It will cease to work in GraphDef version 9. Use tf.nn.batch_normalization().W tensorflow/core/framework/op_def_util.cc:320] Op is deprecated. It will cease to work in GraphDef version 9. Use tf.nn.batch_normalization().W tensorflow/core/framework/op_def_util.cc:320] Op is deprecated. It will cease to work in GraphDef version 9. Use tf.nn.batch_normalization().giant panda, panda, panda bear, coon bear, Ailuropoda melanoleuca (score = 0.89233)indri, indris, Indri indri, Indri brevicaudatus (score = 0.00859)lesser panda, red panda, panda, bear cat, cat bear, Ailurus fulgens (score = 0.00264)custard apple (score = 0.00141)earthstar (score = 0.00107)learning@learning-virtual-machine:~/tensorflow/tensorflow/models/image/imagenet$ TensorFlow
# Copyright 2015 Google Inc. All Rights Reserved.## Licensed under the Apache License, Version 2.0 (the "License");# you may not use this file except in compliance with the License.# You may obtain a copy of the License at## http://www.apache.org/licenses/LICENSE-2.0## Unless required by applicable law or agreed to in writing, software# distributed under the License is distributed on an "AS IS" BASIS,# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.# See the License for the specific language governing permissions and# limitations under the License.# =============================================================================="""Simple image classification with Inception.Run image classification with Inception trained on ImageNet 2012 Challenge dataset.This program creates a graph from a saved GraphDef protocol buffer,and runs inference on an input JPEG image. It outputs human readablestrings of the top 5 predictions along with their probabilities.Change the --image_file argument to any jpg image to compute aclassification of that image.Please see the tutorial and website for a detailed description of howto use this script to perform image recognition.https://tensorflow.org/tutorials/image_recognition/"""from __future__ import absolute_importfrom __future__ import divisionfrom __future__ import print_functionimport os.pathimport reimport sysimport tarfileimport numpy as npfrom six.moves import urllibimport tensorflow as tfFLAGS = tf.app.flags.FLAGS# classify_image_graph_def.pb:# Binary representation of the GraphDef protocol buffer.# imagenet_synset_to_human_label_map.txt:# Map from synset ID to a human readable string.# imagenet_2012_challenge_label_map_proto.pbtxt:# Text representation of a protocol buffer mapping a label to synset ID.tf.app.flags.DEFINE_string( 'model_dir', '/tmp/imagenet', """Path to classify_image_graph_def.pb, """ """imagenet_synset_to_human_label_map.txt, and """ """imagenet_2012_challenge_label_map_proto.pbtxt.""")tf.app.flags.DEFINE_string('image_file', '', """Absolute path to image file.""")tf.app.flags.DEFINE_integer('num_top_predictions', 5, """Display this many predictions.""")# pylint: disable=line-too-longDATA_URL = 'http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz'# pylint: enable=line-too-longclass NodeLookup(object): """Converts integer node ID's to human readable labels.""" def __init__(self, label_lookup_path=None, uid_lookup_path=None): if not label_lookup_path: label_lookup_path = os.path.join( FLAGS.model_dir, 'imagenet_2012_challenge_label_map_proto.pbtxt') if not uid_lookup_path: uid_lookup_path = os.path.join( FLAGS.model_dir, 'imagenet_synset_to_human_label_map.txt') self.node_lookup = self.load(label_lookup_path, uid_lookup_path) def load(self, label_lookup_path, uid_lookup_path): """Loads a human readable English name for each softmax node. Args: label_lookup_path: string UID to integer node ID. uid_lookup_path: string UID to human-readable string. Returns: dict from integer node ID to human-readable string. """ if not tf.gfile.Exists(uid_lookup_path): tf.logging.fatal('File does not exist %s', uid_lookup_path) if not tf.gfile.Exists(label_lookup_path): tf.logging.fatal('File does not exist %s', label_lookup_path) # Loads mapping from string UID to human-readable string proto_as_ascii_lines = tf.gfile.GFile(uid_lookup_path).readlines() uid_to_human = {} p = re.compile(r'[n\d]*[ \S,]*') for line in proto_as_ascii_lines: parsed_items = p.findall(line) uid = parsed_items[0] human_string = parsed_items[2] uid_to_human[uid] = human_string # Loads mapping from string UID to integer node ID. node_id_to_uid = {} proto_as_ascii = tf.gfile.GFile(label_lookup_path).readlines() for line in proto_as_ascii: if line.startswith(' target_class:'): target_class = int(line.split(': ')[1]) if line.startswith(' target_class_string:'): target_class_string = line.split(': ')[1] node_id_to_uid[target_class] = target_class_string[1:-2] # Loads the final mapping of integer node ID to human-readable string node_id_to_name = {} for key, val in node_id_to_uid.items(): if val not in uid_to_human: tf.logging.fatal('Failed to locate: %s', val) name = uid_to_human[val] node_id_to_name[key] = name return node_id_to_name def id_to_string(self, node_id): if node_id not in self.node_lookup: return '' return self.node_lookup[node_id]def create_graph(): """Creates a graph from saved GraphDef file and returns a saver.""" # Creates graph from saved graph_def.pb. with tf.gfile.FastGFile(os.path.join( FLAGS.model_dir, 'classify_image_graph_def.pb'), 'rb') as f: graph_def = tf.GraphDef() graph_def.ParseFromString(f.read()) _ = tf.import_graph_def(graph_def, name='')def run_inference_on_image(image): """Runs inference on an image. Args: image: Image file name. Returns: Nothing """ if not tf.gfile.Exists(image): tf.logging.fatal('File does not exist %s', image) image_data = tf.gfile.FastGFile(image, 'rb').read() # Creates graph from saved GraphDef. create_graph() with tf.Session() as sess: # Some useful tensors: # 'softmax:0': A tensor containing the normalized prediction across # 1000 labels. # 'pool_3:0': A tensor containing the next-to-last layer containing 2048 # float description of the image. # 'DecodeJpeg/contents:0': A tensor containing a string providing JPEG # encoding of the image. # Runs the softmax tensor by feeding the image_data as input to the graph. softmax_tensor = sess.graph.get_tensor_by_name('softmax:0') predictions = sess.run(softmax_tensor, { 'DecodeJpeg/contents:0': image_data}) predictions = np.squeeze(predictions) # Creates node ID --> English string lookup. node_lookup = NodeLookup() top_k = predictions.argsort()[-FLAGS.num_top_predictions:][::-1] for node_id in top_k: human_string = node_lookup.id_to_string(node_id) score = predictions[node_id] print('%s (score = %.5f)' % (human_string, score))def maybe_download_and_extract(): """Download and extract model tar file.""" dest_directory = FLAGS.model_dir if not os.path.exists(dest_directory): os.makedirs(dest_directory) filename = DATA_URL.split('/')[-1] filepath = os.path.join(dest_directory, filename) if not os.path.exists(filepath): def _progress(count, block_size, total_size): sys.stdout.write('\r>> Downloading %s %.1f%%' % ( filename, float(count * block_size) / float(total_size) * 100.0)) sys.stdout.flush() filepath, _ = urllib.request.urlretrieve(DATA_URL, filepath, _progress) print() statinfo = os.stat(filepath) print('Succesfully downloaded', filename, statinfo.st_size, 'bytes.') tarfile.open(filepath, 'r:gz').extractall(dest_directory)def main(_): maybe_download_and_extract() image = (FLAGS.image_file if FLAGS.image_file else os.path.join(FLAGS.model_dir, 'cropped_panda.jpg')) run_inference_on_image(image)if __name__ == '__main__': tf.app.run()
发表评论
最新留言
很好
[***.229.124.182]2025年03月25日 03时16分26秒
关于作者

喝酒易醉,品茶养心,人生如梦,品茶悟道,何以解忧?唯有杜康!
-- 愿君每日到此一游!
推荐文章
2021QS计算机专业排名发布:MIT斯坦福霸榜,清华北大进入前20
2019-03-03
JavaScript学习手册(45)
2019-03-03
【纪中2020.5.2日】模拟赛题解
2019-03-03
【纪中2020.5.06日】模拟赛题解
2019-03-03
eclipse中server location灰色解决
2019-03-03
idea 写web项目图片不显示
2019-03-03
实用网站推荐
2019-03-03
idea中写mybatis报错
2019-03-03
CSS浮动属性
2019-03-03
SVM多类识别
2019-03-03
svn 撤销已提交的错误修改
2019-03-03
算法工程师数学理论提高札记(improving)
2019-03-03
Android网络优化--精准获取流量消耗
2019-03-03
VTK:IO之WriteVTI
2019-03-03
VTK:图片之ImageExport
2019-03-03
VTK:图片之ImageMathematics
2019-03-03
VTK:图片之ImageOrientation
2019-03-03
VTK:图片之ImageToPolyDataFilter
2019-03-03
VTK:图片之ImageToStructuredPoints
2019-03-03
VTK:图片之ImageValueRange
2019-03-03