【ybt】【基算 递推 课过 例1】错排问题
发布日期:2021-05-06 16:01:23 浏览次数:13 分类:技术文章

本文共 761 字,大约阅读时间需要 2 分钟。

错排问题

题目链接:


题目描述

在这里插入图片描述

解题思路

这道题是一道入门级(个鬼)的递推。

f n f_n fn n n n 个数的合法排列。

我们将第 n n n 个数放在第 k k k 个位置上,则有 n − 1 n-1 n1 中放法( n ! = k n!=k n!=k)。

余下的元素有两种情况:

  • k k k 放在 n n n 上,则剩下的元素为 n − 2 n-2 n2 的错排,即 f n − 2 f_{n-2} fn2
  • k k k 放在非 n n n 的位置上,则包括 k k k 在内剩下的元素为 n − 1 n-1 n1 的错排,即 f n − 1 f_{n-1} fn1

因为我们是在确定 n n n 的位置之后再考虑 k k k 的情况,所以 n n n 的情况和 k k k 的情况满足乘法原理。

因为 k k k n n n 与不放 n n n 是两种不同的情况,所以这两种情况满足加法原理。

得递推式为: f n = ( n + 1 ) ( f n − 1 + f n − 2 ) f_n=(n+1)(f_{n-1}+f_{n-2}) fn=(n+1)(fn1+fn2)

其中 f 1 = 0 f_1=0 f1=0 f 2 = 1 f_2=1 f2=1

code

#include
#include
#define int long longusing namespace std;int n;int f[30];signed main(){ cin>>n; f[1]=0,f[2]=1; for(int i=3;i<=n;i++) f[i]=(i-1)*(f[i-1]+f[i-2]); cout<
<
上一篇:【ybt】【基算 递推 课过 例2】奇怪汉诺塔
下一篇:【SSL_1532】递推

发表评论

最新留言

关注你微信了!
[***.104.42.241]2025年03月17日 18时57分19秒