imx51-linux的cpuinfo之分析
发布日期:2021-06-30 21:49:08 浏览次数:3 分类:技术文章

本文共 6311 字,大约阅读时间需要 21 分钟。

这两天客户提出来,我们的平板cat /proc/cpuinfo出来的信息中的serial怎么是0.

客户就是上帝啊,没办法,分析找问题贝。

我们先看一下目前的cat /proc/cpuinfo的信息:

Processor       : ARMv7 Processor rev 5 (v7l)                                   

BogoMIPS        : 799.53                                                        

Features        : swp half thumb fastmult vfp edsp neon vfpv3                   

CPU implementer : 0x41                                                          

CPU architecture: 7                                                             

CPU variant     : 0x2                                                           

CPU part        : 0xc08                                                         

CPU revision    : 5                                                             

                                                                                

Hardware        : Freescale MX51 F101 Board                                     

Revision        : 51030                                                         

Serial          : 0000000000000000
 


我们找到kernel中的cpuinfo的文件,路径在fs/proc/cpuinfo.c 。

我们首先看一下它的init函数:

static int __init proc_cpuinfo_init(void)

{

    proc_create("cpuinfo", 0, NULL, &proc_cpuinfo_operations);

    return 0;

}

嗯,很明星,我们cat /proc/cpuinfo的文件就是在该init中创建的。我们注意到创建该文件时传入了fops。我们再看一下proc_cpuinfo_operations这个fops定义:

static const struct file_operations proc_cpuinfo_operations = {

    .open        = cpuinfo_open,

    .read        = seq_read,

    .llseek        = seq_lseek,

    .release    = seq_release,

};


我们执行cat /proc/cpuinfo时实际就是执行了open和read这两个函数。

我们下面分别分析一下open和read分别做了什么事情。

1,open

open定义如下:

static int cpuinfo_open(struct inode *inode, struct file *file)

{

    return seq_open(file, &cpuinfo_op);

}

我们发现调用open的时候传入了cpuinfo_op这个结构。这个结构就是cpuinfo的实际操作方法。这个cpuinfo_op是每种cpu架构都必须特别定义的。我们用的是arm架构,我们找到它的定义:

arch/arm/kernel/setup.c :

const struct seq_operations cpuinfo_op = {

    .start    = c_start,

    .next    = c_next,

    .stop    = c_stop,

    .show    = c_show

};

我们知道这个结构体后,我们继续看open,

int seq_open(struct file *file, const struct seq_operations *op)

{

    struct seq_file *p = file->private_data;


    if (!p) { //如果file->private_data为空,则为它申请空间

        p = kmalloc(sizeof(*p), GFP_KERNEL);

        if (!p)

            return -ENOMEM;

        file->private_data = p;

    }

    memset(p, 0, sizeof(*p));//清0

    mutex_init(&p->lock); //初始化mutex

    p->op = op;  //
将上面传进来的cpuinfo_op赋值给file


    file->f_version = 0;

    file->f_mode &= ~FMODE_PWRITE;

    return 0;

}

我们看到seq_open的主要作用是将ops保持到file->private_data中。


2,read

我们上面说cat /proc/cpuinfo就相对于执行open和read,我们下面来看看热啊的。

ssize_t seq_read(struct file *file, char __user *buf, size_t size, loff_t *ppos)

{

    struct seq_file *m = (struct seq_file *)file->private_data;//
看清楚了,把刚才上面open中的cpuinfo_op取出来了!下面就可以使用这个结构里面的方法了!

    size_t copied = 0;

    loff_t pos;

    size_t n;

    void *p;

    int err = 0;


    mutex_lock(&m->lock);

    ......

     pos = m->index;

    p = m->op->start(m, &pos);//执行
cpuinfo_op中的start方法

    while (1) {

        err = PTR_ERR(p);

        if (!p || IS_ERR(p))

            break;

        err = m->op->show(m, p);//执行
cpuinfo_op中show方法

        if (err < 0)

            break;

        if (unlikely(err))

            m->count = 0;

        if (unlikely(!m->count)) {

            p = m->op->next(m, p, &pos);

            m->index = pos;

            continue;

        }

        if (m->count < m->size)

            goto Fill;

        m->op->stop(m, p);

        kfree(m->buf);

        m->buf = kmalloc(m->size <<= 1, GFP_KERNEL);

        if (!m->buf)

            goto Enomem;

        m->count = 0;

        m->version = 0;

        pos = m->index;

        p = m->op->start(m, &pos);

    }

    m->op->stop(m, p);

    ......

    

}

我们看到read方法中主要执行了
cpuinfo_op中方法:

const struct seq_operations cpuinfo_op = {

    .start    = c_start,

    .next    = c_next,

    .stop    = c_stop,

    .show    = c_show

};

我们下面一个一个来分析,

static void *c_start(struct seq_file *m, loff_t *pos)

{

    return *pos < 1 ? (void *)1 : NULL;

}

c_start主要验证文件的位置。

static void *c_next(struct seq_file *m, void *v, loff_t *pos)

{

    ++*pos;

    return NULL;

}

c_next移动文件位置的指针,指向下一个。

static void c_stop(struct seq_file *m, void *v)

{

}

c_stop没有做事情。


static int c_show(struct seq_file *m, void *v)

{

    int i;

    /*打印cpu的processor,例如例子中的Processor       : ARMv7 Processor rev 5 (v7l)*/

    seq_printf(m, "Processor\t: %s rev %d (%s)\n",

           cpu_name, read_cpuid_id() & 15, elf_platform);


#if defined(CONFIG_SMP)//如果是多核处理器,则分别打印cpu的processor信息和主频信息

    for_each_online_cpu(i) {

        /*

         * glibc reads /proc/cpuinfo to determine the number of

         * online processors, looking for lines beginning with

         * "processor".  Give glibc what it expects.

         */

        seq_printf(m, "processor\t: %d\n", i);

        seq_printf(m, "BogoMIPS\t: %lu.%02lu\n\n",

               per_cpu(cpu_data, i).loops_per_jiffy / (500000UL/HZ),

               (per_cpu(cpu_data, i).loops_per_jiffy / (5000UL/HZ)) % 100);

    }

#else /* CONFIG_SMP */

    seq_printf(m, "BogoMIPS\t: %lu.%02lu\n",

           loops_per_jiffy / (500000/HZ),

           (loops_per_jiffy / (5000/HZ)) % 100);

#endif


    /* dump out the processor features */

    seq_puts(m, "Features\t: ");//下面打印feature信息


    for (i = 0; hwcap_str
; i++)
        if (elf_hwcap & (1 << i))
            seq_printf(m, "%s ", hwcap_str);
    seq_printf(m, "\nCPU implementer\t: 0x%02x\n", read_cpuid_id() >> 24);
    seq_printf(m, "CPU architecture: %s\n", proc_arch[cpu_architecture()]);
    if ((read_cpuid_id() & 0x0008f000) == 0x00000000) {
        /* pre-ARM7 */
        seq_printf(m, "CPU part\t: %07x\n", read_cpuid_id() >> 4);
    } else {
        if ((read_cpuid_id() & 0x0008f000) == 0x00007000) {
            /* ARM7 */
            seq_printf(m, "CPU variant\t: 0x%02x\n",
                   (read_cpuid_id() >> 16) & 127);
        } else {
            /* post-ARM7 */
            seq_printf(m, "CPU variant\t: 0x%x\n",
                   (read_cpuid_id() >> 20) & 15);
        }
        seq_printf(m, "CPU part\t: 0x%03x\n",
               (read_cpuid_id() >> 4) & 0xfff);
    }
    seq_printf(m, "CPU revision\t: %d\n", read_cpuid_id() & 15);
    seq_puts(m, "\n");
    seq_printf(m, "Hardware\t: %s\n", machine_name);
    seq_printf(m, "Revision\t: %04x\n", system_rev);
    seq_printf(m, "Serial\t\t: %08x%08x\n",
           system_serial_high, system_serial_low);//这里我们终于看到serial打印的地方了。我们发现主要打印 system_serial_high,和system_serial_low两个变量的值。如果没有赋值,则打印0。我们要做的工作就是为这两个变量赋值。
    return 0;
}
好了,问题分析差不多了,下面就是实现它。这个值就是cpu的uuid,Unique ID是芯片的唯一的ID,是芯片的产线上的信息。每个芯片都有不同的值,每种芯片都有不一样的方法去读。
我们平板用的是imx51,以imx51为例子,它是通过IIM读Fuse的数据。地址是:(0x83F98000 + 0x820) ~ (0x83F98000 + 0x83C),共8个字节。
具体实现,代码奉上:
在driver/char/mxc_iim.c中的probe加上:
    /*via iim, read cpu UID*/
//open iim
    iim_data->clk = clk_get(NULL, "iim_clk");
    if (IS_ERR(iim_data->clk)) {
        dev_err(iim_data->dev, "No IIM clock defined\n");
        return -ENODEV;
    }
    clk_enable(iim_data->clk);
    mxc_iim_disable_irq();
//read iim
    addr = 0x820; //uid start addr
    for(i=0;i<32;i+=4){
        bank = (addr + i - iim_data->bank_start) >> 10;
        row  = ((addr + i - iim_data->bank_start) & 0x3ff) >> 2;
        dev_dbg(iim_data->dev, "Read fuse at bank:%d row:%d\n",
                bank, row);
        mutex_lock(&iim_data->mutex);
        fuse_val = sense_fuse(bank, row, 0);
        serial[i/4] = fuse_val;
        mutex_unlock(&iim_data->mutex);
        dev_dbg(iim_data->dev, "fuses at addr0x%x(bank:%d, row:%d) = 0x%x\n",
             addr + i, bank, row, fuse_val);
    }
    system_serial_low = ((serial[3]<<24)&0xff000000) + ((serial[2]<<16)&0x00ff0000) + ((serial[1]<<8)&0x0000ff00) + (serial[0]&0x000000ff);
    system_serial_high = ((serial[7]<<24)&0xff000000) + ((serial[6]<<16)&0x00ff0000) + ((serial[5]<<8)&0x0000ff00) + (serial[4]&0x000000ff);
    dev_info(iim_data->dev, "system_serial_high:0x%x, system_serial_low:0x%x", system_serial_high, system_serial_low);
OK,至此就非常完美地实现了!

转载地址:https://loongembedded.blog.csdn.net/article/details/39501537 如侵犯您的版权,请留言回复原文章的地址,我们会给您删除此文章,给您带来不便请您谅解!

上一篇:CE6.0 下获得 SD 卡序列号的方法
下一篇:PSAM 卡的应用 操作方法

发表评论

最新留言

关注你微信了!
[***.104.42.241]2024年04月30日 18时23分34秒