MySQL的行锁、表锁、间隙锁详解
发布日期:2021-06-30 12:24:33 浏览次数:2 分类:技术文章

本文共 8782 字,大约阅读时间需要 29 分钟。

1 MySQL锁

1.1 表锁

  • 开销小,加锁快
  • 不会出现死锁
  • 锁定粒度大,发生锁冲突的概率最高,并发度最低

1.2 行锁

  • 开销大,加锁慢
  • 会出现死锁
  • 锁定粒度小,发生锁冲突的概率最低,并发度最高

1.3 页锁

  • 开销和加锁时间介于表锁和行锁之间
  • 会出现死锁
  • 锁定粒度介于表锁和行锁之间,并发度一般

1.4 引擎与锁

  • MyISAM和MEMORY支持表锁
  • BDB支持页锁,也支持表锁
  • Innodb既支持行锁,也支持表锁,默认行锁

1.5 查询表锁争用情况

检查table_locks_waitedtable_locks_immediate状态变量分析

  • table_locks_immediate : 可以立即获取锁的次数
  • table_locks_waited : 不能立即获取锁,需要等待锁的次数

image

image

table_locks_waited 的值越高,则说明存在严重的表级锁的争用情况

2 MyISAM的表锁

MySQL的表锁有两种模式

  • 表共享读锁(Table Read Lock)
  • 表独占写锁(Table Write Lock)

2.1 表锁兼容性

锁模式的兼容:

是否兼容 请求none 请求读锁 请求写锁
当前处于读锁
当前处于写锁

MyISAM表的读操作不会阻塞其他用户对同一表的读请求,但会阻塞对同一表的写请求。

MyISAM表的写操作会阻塞其他用户对同一表的读和写请求。
MyISAM表的读和写操作之间,以及写和写操作之间是串行的。即当某一线程获得对一个表的写锁后,只有持有锁的线程可对表进行更新,其他线程的读、写操作都会阻塞,直到锁被释放为止。

2.2 如何加表锁

对于 MyISAM 引擎

  • 执行select前,会自动给涉及的所有表加
  • 执行更新(update,delete,insert)会自动给涉及到的表加

无需直接显式用lock table命令。

对于给MyISAM显式加锁,一般是为了模拟事务操作,实现对某一个时间点多个表一致性读取

2.2.1 实例

  • 订单表 orders

    记录各订单的总金额total

  • 订单明细表 order_detail

    记录各订单每一产品的金额小计subtotal

假设需检查这两个表的金额合计是否相符,可能执行如下SQL

Select sum(total) from orders;Select sum(subtotal) from order_detail;

如果不先给这两个表加锁,就可能产生错误的结果:因为第一条语句执行过程中,order_detail表可能已发生改变:

因此,正确写法应该如下

Lock tables orders read local, order_detail read local;Select sum(total) from orders;Select sum(subtotal) from order_detail;Unlock tables;

Lock tables时加的 local 选项,以满足MyISAM表并发插入时,允许其他用户在表尾插入记录。

在用Lock tables给表显式加表锁时,必须同时取得所有涉及表的锁,并且MySQL不支持锁升级:即在执行Lock tables后,只能访问显式加锁的这些表,不能访问未加锁的表;

同时,如果加的是读锁,那么只能执行查询,而不能执行更新。在自动加锁情况下也这样,MySQL会一次获得SQL语句所需要的全部锁,这也正是MyISAM表不会死锁的原因。

2.3 tips

当使用lock tables时,不仅需要一次锁定用到的所有表

且同一表在SQL语句中出现多少次,就要通过与SQL语句中别名锁多少次

lock table actor read

会提示错误

select a.first_name.....

需要对别名分别锁定

lock table actor as a read,actor as b read;

3 MyISAM的并发锁

在一定条件下,MyISAM也支持并发插入和读取

3.1 系统变量 : concurrent_insert

控制其并发插入的行为,其值分别可以为

  • 0 不允许并发插入,所有插入对表加互斥锁
  • 1 只要表中无空洞,就允许并发插入.
    MyISAM允许在一个读表的同时,另一个进程从表尾插入记录(MySQL的默认设置)
  • 2 无论MyISAM表中有无空洞,都强制在表尾并发插入记录
    若无读线程,新行插入空洞中

可以利用MyISAM的并发插入特性,来解决应用中对同表查询和插入的锁争用

例如,将concurrent_insert系统变量设为2,总是允许并发插入;
同时,通过定期在系统空闲时段执行OPTIONMIZE TABLE语句来整理空间碎片,收到因删除记录而产生的中间空洞

删除操作不会重整整个表,只是把 行 标记为删除,在表中留下空洞

MyISAM倾向于在可能时填满这些空洞,插入时就会重用这些空间,无空洞则把新行插到表尾

3.2 MyISAM的锁调度

MyISAM的读和写锁互斥,读操作串行的

  • 一个进程请求某个MyISAM表的读锁,同时另一个进程也请求同表的写锁,MySQL如何处理呢?
    写进程先获得锁!!!
    不仅如此,即使读进程先请求先到锁等待队列,写请求后到,写锁也会插到读请求之前!!!

这是因为MySQL认为写请求一般比读请求重要

这也正是MyISAM不适合有大量更新 / 查询操作应用的原因
大量的更新操作会造成查询操作很难获得读锁,从而可能永远阻塞

幸好,我们可以通过一些设置来调节MyISAM的调度行为

  • 指定启动参数low-priority-updates
    使MyISAM引擎默认给予读请求以优先权利
  • 执行命令SET LOW_PRIORITY_UPDATES=1
    使该连接发出的更新请求优先级降低
  • 指定INSERT、UPDATE、DELETE语句的LOW_PRIORITY属性
    降低该语句的优先级

虽然上面3种方法都是要么更新优先,要么查询优先,但还是可以用其来解决查询相对重要的应用(如用户登录系统)中,读锁等待严重的问题

另外,MySQL也提供了一种折中的办法来调节读写冲突;

即给系统参数max_write_lock_count设置一个合适的值;
当一个表的读锁达到这个值后,MySQL便暂时将写请求的优先级降低,给读进程一定获得锁的机会

4 InnoDB锁

InnoDB与MyISAM的最大不同有两点

  • 支持事务
  • 采用行锁

行级锁和表级锁本来就有许多不同之处,另外,事务的引入也带来了一些问题。

查看Innodb行锁争用情况

如果发现争用比较严重,如Innodb_row_lock_waitsInnodb_row_lock_time_avg的值比较高

查询information_schema相关表来查看锁情况

设置Innodb monitors

进一步观察发生锁冲突的表,数据行等,并分析锁争用的原因

停止监视器

drop table innodb_monitor

默认情况每15秒会向日志中记录监控的内容;

如果长时间打开会导致.err文件变得非常巨大;
所以确认原因后,要删除监控表关闭监视器,或者通过使用–console选项来启动服务器以关闭写日志功能

4.4 InnoDB的行锁

InnoDB支持以下两种类型的行锁

  • 共享锁(读锁S)
    若事务 T 对数据对象 A 加了 S 锁;
    则事务 T 可以读 A 但不能修改 A;
    其它事务只能再对它加 S 锁,而不能加 X 锁,直到 T 释放 A 上的 S 锁;
    这保证了,其他事务可以读 A,但在事务 T 释放 S 锁之前,不能对 A 做任何修改操作.
  • 排他锁(写锁X)
    若事务 T 对数据对象A加 X 锁;
    事务 T 可以读 A 也可以修改 A;
    其他事务不能对 A 加任何锁,直到 T 释放 A 上的锁;
    这保证了,其他事务在 T 释放 A 上的锁之前不能再读取和修改 A .

MySQL InnoDB默认行级锁

行级锁都是基于索引的,若一条SQL语句用不到索引是不会使用行级锁的,会使用表级锁把整张表锁住

为了允许行/表锁共存,实现多粒度锁,InnoDB还有两种内部使用的:

意向锁(Intention Locks)

这两种意向锁都是表级锁:

  • 意向共享锁(IS)
    事务打算给数据行共享锁,事务在给一个数据行加共享锁前必须先取得该表的IS锁
  • 意向排他锁(IX)
    事务打算给数据行加排他锁,事务在给一个数据行加排他锁前必须先取得该表的IX锁
当前锁/是否兼容/请求锁 X IX S IS
X 冲突 冲突 冲突 冲突
IX 冲突 兼容 冲突 兼容
S 冲突 冲突 兼容 兼容
IS 冲突 兼容 兼容 兼容

如果一个事务请求的锁模式与当前锁兼容,InnoDB就请求的锁授予该事务,反之如果两者不兼容,该事务就要等待锁释放

意向锁是InnoDB自动加的,不需用户干预.

对于UPDATE、DELETE和INSERT语句,InnoDB会自动给涉及及数据集加排他锁(X);
对于普通SELECT语句,InnoDB不会加任何锁.

对于SELECT语句,可以通过以下语句显式地给记录加读/写锁

  • 共享锁(S)
  • 排他锁(X)
    共享锁语句主要用在需要数据依存关系时确认某行记录是否存在;
    并确保没有人对这个记录UPDATE或DELETE.
    但如果当前事务也需要对该记录进行更新,则很有可能造成死锁;
    对于锁定行记录后需要进行更新操作的应用,应该使用排他锁语句.

此外还有自增锁(auto-in)和 lock tables/DDL等表级锁

查看锁:

SHOW ENGINE INNODB STATUS;

4.5 实例

4.5.1 Innodb共享锁

session_1 session_2
set autocommit=0,select * from actor where id =1 set autocommit=0,select * from actor where id =1
当前seesion对id为1的记录加入共享锁 select * from actor where id =1 lock in share mode
其他seesion仍然可以查询,并对该记录加入 select * from actor where id =1 lock in share mode
当前session对锁定的记录进行更新,等待锁 update。。。where id=1
当前session对锁定记录进行更新,则会导致死锁退出 update。。。where id=1
获得锁,更新成功

4.5.2 Innodb排他锁

session_1 session_2
set autocommit=0,select * from actor where id =1 set autocommit=0,select * from actor where id =1
当前seesion对id为1的记录加入for update 共享锁 select * from actor where id =1 for update
可查询该记录select *from actor where id =1,但是不能再记录共享锁,会等待获得锁select *from actor where id =1 for update
更新后释放锁 update。。。 commit
其他session,获得锁,得到其他seesion提交的记录

4.6 行锁的实现

行锁是通过给索引上的索引项加锁来实现。若没有索引,InnoDB将通过隐藏的聚簇索引来对记录加锁:

  • Record Locks
    对索引项加锁
  • Gap lock
    对索引项之的“间隙“,第一条记录前的”间隙“,或最后一条记录后的”间隙“,加锁
  • Next-key lock
    前两种的组合,对记录及其前面的间隙加锁

行锁实现特点意味着:

若不通过索引条件检索数据,则Innodb将对表的所有记录加锁,和表锁一样。

记录锁(Record Locks)

record lock是对索引加的锁。例如,

SELECT c1 FROM t WHERE c1 = 10 FOR UPDATE;

阻止任何其他事务插入、更新或删除 t.c1=10 的行。

Record Locks总是锁定索引记录,即使表没有定义索引。对于这种情况,InnoDB 会创建一个隐藏的聚集索引并使用该索引进行记录锁定。

record lock的事务数据在 SHOW ENGINE INNODB STATUS 和 InnoDB 监视器输出中显示类似于以下内容:

RECORD LOCKS space id 58 page no 3 n bits 72 index `PRIMARY` of table `test`.`t`trx id 10078 lock_mode X locks rec but not gapRecord lock, heap no 2 PHYSICAL RECORD: n_fields 3; compact format; info bits 0 0: len 4; hex 8000000a; asc     ;; 1: len 6; hex 00000000274f; asc     'O;; 2: len 7; hex b60000019d0110; asc        ;;

间隙锁(Next-Key锁)

当我们用范围条件而不是相等条件检索数据,并请求共享或排他锁时,InnoDB会给符合条件的已有数据的索引项加锁;

对于键值在条件范围内但并不存在的记录,叫做“间隙(GAP)”,InnoDB也会对这个“间隙”加锁,这种锁机制就是所谓的间隙锁(Next-Key锁).

举例来说,假如emp表中只有101条记录,其empid的值分别是1,2,…,100,101,下面的SQL:

InnoDB 不仅会对符合条件的 empid 值为 101 的记录加锁;
也会对 empid大于101(这些记录并不存在)的“间隙”加锁

作用

  • 防止幻读,以满足相关隔离级别的要求
    对于上例,若不使用间隙锁,如果其他事务插入 empid 大于 100 的任何记录,;
    那么本事务如果再次执行上述语句,就会发生幻读
  • 满足其恢复和复制的需要
    在使用范围条件检索并锁定记录时;
    InnoDB 这种加锁机制会阻塞符合条件范围内键值的并发插入,这往往会造成严重的锁等待;
    因此,在实际开发中,尤其是并发插入较多的应用;
    我们要尽量优化业务逻辑,尽量使用相等条件来访问更新数据,避免使用范围条件.

4.7 when 使用表锁

对于InnoDB,在绝大部分情况下都应该使用行锁

因为事务,行锁往往是我们选择InnoDB的理由

但在个别特殊事务中,也可以考虑使用表锁

  • 事务需要更新大部分数据,表又较大
    若使用默认的行锁,不仅该事务执行效率低(因为需要对较多行加锁,加锁是需要耗时的);
    而且可能造成其他事务长时间锁等待和锁冲突;
    这种情况下可以考虑使用表锁来提高该事务的执行速度
  • 事务涉及多个表,较复杂,很可能引起死锁,造成大量事务回滚
    这种情况也可以考虑一次性锁定事务涉及的表,从而避免死锁、减少数据库因事务回滚带来的开销

当然,应用中这两种事务不能太多,否则,就应该考虑使用MyISAM

在InnoDB下 ,使用表锁要注意

  • 使用LOCK TALBES虽然可以给InnoDB加表锁
    表锁不是由InnoDB引擎层管理的,而是由其上一层MySQL Server负责;
    仅当autocommit=0、innodb_table_lock=1(默认设置),InnoDB 引擎层才知道MySQL加的表锁,MySQL Server才能感知InnoDB加的行锁;
    这种情况下,InnoDB才能自动识别涉及表锁的死锁
    否则,InnoDB将无法自动检测并处理这种死锁
  • 在用LOCK TALBESInnoDB锁时要注意,要将autocommit设为0,否则MySQL不会给表加锁
    事务结束前,不要用UNLOCK TALBES释放表锁,因为它会隐式地提交事务
    COMMIT或ROLLBACK不能释放用LOCK TALBES加的表锁,必须用UNLOCK TABLES释放表锁,正确的方式见如下语句
  • 需要写表t1并从表t读

5 死锁

MyISAM表锁是deadlock free的,这是因为MyISAM总是一次性获得所需的全部锁,要么全部满足,要么等待,因此不会出现死锁

但在InnoDB中,除单个SQL组成的事务外,锁是逐步获得的,这就决定了InnoDB发生死锁是可能的

发生死锁后,InnoDB一般都能自动检测到,并使一个事务释放锁并退回,另一个事务获得锁,继续完成事务

  • 但在涉及外部锁,或涉及锁的情况下,InnoDB并不能完全自动检测到死锁
    这需要通过设置锁等待超时参数innodb_lock_wait_timeout来解决
    需要说明的是,这个参数并不是只用来解决死锁问题,在并发访问比较高的情况下,如果大量事务因无法立即获取所需的锁而挂起,会占用大量计算机资源,造成严重性能问题,甚至拖垮数据库
    我们通过设置合适的锁等待超时阈值,可以避免这种情况发生。

通常来说,死锁都是应用设计的问题,通过调整业务流程、数据库对象设计、事务大小、以及访问数据库的SQL语句,绝大部分都可以避免

下面就通过实例来介绍几种死锁的常用方法。

  • 应用中,不同的程序会并发存取多个表
    尽量约定以相同的顺序访问表
  • 程序批处理数据时
    事先对数据排序,保证每个线程按固定的顺序来处理记录
  • 在事务中,要更新记录
    直接申请排他锁,而不应该先申请共享锁
  • 可重复读下,如果两个线程同时对相同条件记录用SELECT...ROR UPDATE加排他写锁
    在没有符合该记录情况下,两个线程都会加锁成功
    程序发现记录尚不存在,就试图插入一条新记录,如果两个线程都这么做,就会出现死锁
    这种情况下,将隔离级别改成READ COMMITTED,就可以避免问题
  • 当隔离级别为READ COMMITED时,如果两个线程都先执行SELECT...FOR UPDATE
    判断是否存在符合条件的记录,没有 -> 插入记录;
    此时,只有一个线程能插入成功,另一个线程会出现锁等待.
    当第1个线程提交后,第2个线程会因主键重出错,但虽然这个线程出错了,却会获得一个排他锁!这时如果有第3个线程又来申请排他锁,也会出现死锁.
    对于这种情况,可以直接做插入操作,然后再捕获主键重异常,或者在遇到主键重错误时,总是执行ROLLBACK释放获得的排他锁

如果出现死锁,可以用SHOW INNODB STATUS命令来确定最后一个死锁产生的原因和改进措施。

6 总结

6.1 MyISAM的表锁

  • 共享读锁之间是兼容的,但共享读锁和排他写锁之间,以及排他写锁之间互斥,即读写串行
  • 在一定条件下,MyISAM允许查询/插入并发,可利用这一点来解决应用中对同一表查询/插入的锁争用问题
  • MyISAM默认的锁调度机制是写优先,这并不一定适合所有应用,用户可以通过设置LOW_PRIPORITY_UPDATES参数或在INSERT、UPDATE、DELETE语句中指定LOW_PRIORITY选项来调节读写锁的争用
  • 由于表锁的锁定粒度大,读写又是串行的,因此如果更新操作较多,MyISAM表可能会出现严重的锁等待,可以考虑采用InnoDB表来减少锁冲突

6.2 对于InnoDB表

  • 行锁基于索引实现
    如果不通过索引访问数据,InnoDB会使用表锁
  • 间隙锁机制及使用间隙锁的原因
  • 不同的隔离级别下,InnoDB的锁机制和一致性读策略不同
  • MySQL的恢复和复制对InnoDB锁机制和一致性读策略也有较大影响
  • 锁冲突甚至死锁很难完全避免

7 索引与锁

在了解InnoDB的锁特性后,用户可以通过设计和SQL调整等措施减少锁冲突和死锁

  • 尽量使用较低的隔离级别
  • 精心设计索引,并尽量使用索引访问数据,使加锁更精确,从而减少锁冲突的机会。

利用索引优化锁

  • 索引可以减少锁定的行数
  • 索引可以加快处理速度,同时也加快了锁的释放
  • 选择合理的事务大小,小事务发生锁冲突的几率也更小
  • 给记录集显式加锁时,最好一次性请求足够级别的锁。比如要修改数据的话,最好直接申请排他锁,而不是先申请共享锁,修改时再请求排他锁,这样容易产生死锁。
  • 不同的程序访问一组表时,应尽量约定以相同的顺序访问各表,对一个表而言,尽可能以固定的顺序存取表中的行。这样可以大减少死锁的机会。
  • 尽量用相等条件访问数据,这样可以避免间隙锁对并发插入的影响。
  • 不要申请超过实际需要的锁级别;除非必须,查询时不要显示加锁。
  • 对于一些特定的事务,可以使用表锁来提高处理速度或减少死锁的可能

索引的维护和优化

删除重复和冗余的索引

primary key(id) ,unique key (id) ,index(id)
主键索引、唯一索引、单列索引

  • 注意加粗的联合索引

    Index(a),index(a,b)
    primary key(id),index(a,id)

  • 删除重复和冗余的索引

    查找未被使用过的索引

  • 更新索引统计信息及减少索引碎片

    analyze table table_ name
    optimize table table_ name
    使用不当会导致锁表

参考

  • https://developer.aliyun.com/article/3780

转载地址:https://javaedge.blog.csdn.net/article/details/105701885 如侵犯您的版权,请留言回复原文章的地址,我们会给您删除此文章,给您带来不便请您谅解!

上一篇:和阿里面试官扯了半小时ArrayBlockingQueue源码
下一篇:Swing 的任务线程与 EDT 事件分发队列模型

发表评论

最新留言

网站不错 人气很旺了 加油
[***.192.178.218]2024年04月12日 18时30分53秒