线性逻辑回归的梯度下降算法python实现
发布日期:2021-05-28 17:02:19 浏览次数:28 分类:技术文章

本文共 2661 字,大约阅读时间需要 8 分钟。

线性逻辑回归的梯度下降算法python实现

前言: 逻辑回归是解决分类问题的一种的方法,关于逻辑回归的具体理论知识

一、逻辑回归python实现示例代码

import matplotlib.pyplot as pltimport numpy as npfrom sklearn.metrics import classification_reportfrom sklearn import preprocessing# 数据是否需要标准化scale = False# 读取数据data = np.genfromtxt('LR-testSet.csv', delimiter=',')x_data = data[:, 0:-1]y_data = data[:, -1, np.newaxis]# 绘制各类别的数据散点图def plotClass():    x0 = []    y0 = []    x1 = []    y1 = []    for i in range(len(x_data)):        if y_data[i] == 0:            x0.append(x_data[i, 0])            y0.append(x_data[i, 1])        else:            x1.append(x_data[i, 0])            y1.append(x_data[i, 1])    # 绘图    s1 = plt.scatter(x0, y0, c='b', marker='o')    s2 = plt.scatter(x1, y1, c='r', marker='x')    plt.legend(handles=[s1, s2], labels=['class0', 'class1'])# 给样本添加偏置值项X_data = np.concatenate((np.ones((100, 1)), x_data), axis=1)# 定义逻辑回归的模型函数(S型函数)def sigmoid(x):    return 1 / (1 + np.exp(-x))# 计算代价值def cost(xMat, yMat, ws):    left = np.multiply(yMat, np.log(sigmoid(xMat * ws)))    right = np.multiply(1 - yMat, np.log(1 - sigmoid(xMat * ws)))    return np.sum(left + right) / -len(xMat)# 梯度下降算法def gradAscent(xArr, yArr):    if scale:        xArr = preprocessing.scale(xArr)    xMat = np.mat(xArr)    yMat = np.mat(yArr)    # 学习率    lr = 0.001    # 梯度下降迭代次数    ite = 10000    # 记录梯度下降过程中的代价值    costList = []    # 计算数据行列数    m, n = np.shape(xMat)    # 初始化线性函数权重    ws = np.mat(np.ones((n, 1)))    for i in range(ite + 1):        h = sigmoid(xMat * ws)        ws_grad = xMat.T * (h - yMat) / m        ws = ws - lr * ws_grad        if i % 50 == 0:            costList.append(cost(xMat, yMat, ws))    return ws, costListws, costList = gradAscent(X_data, y_data)# 画决策边界if not scale:    plotClass()    x_test = [[-4], [3]]    y_test = (-ws[0] - x_test * ws[1]) / ws[2]    plt.plot(x_test, y_test, 'k')# 绘制代价值的变化plt.figure()x = np.linspace(0, 10000, 201)plt.plot(x, costList, c='r')plt.title('Train')plt.xlabel('iteration')plt.ylabel('cost')# 根据训练的模型进行预测类型def predict(x_data, ws):    if scale:        x_data = preprocessing.scale(x_data)    xMat = np.mat(x_data)    ws = np.mat(ws)    return [1 if x >= 0.5 else 0 for x in sigmoid(xMat * ws)]predictions = predict(X_data, ws)# 计算准确率,召回率,F1值print(classification_report(y_data, predictions))plt.show()

二、执行结果

precision    recall  f1-score   support         0.0       0.82      1.00      0.90        47         1.0       1.00      0.81      0.90        53   micro avg       0.90      0.90      0.90       100   macro avg       0.91      0.91      0.90       100weighted avg       0.92      0.90      0.90       100

在这里插入图片描述

三、数据下载
链接:https://pan.baidu.com/s/1cOxjGUyVbf3qDtPFPJKqwA
提取码:1mlo

转载地址:https://blog.csdn.net/qq_34720818/article/details/105884810 如侵犯您的版权,请留言回复原文章的地址,我们会给您删除此文章,给您带来不便请您谅解!

上一篇:sklearn实现线性逻辑回归
下一篇:sklearn值弹性网算法应用以及线性回归模型算法总结

发表评论

最新留言

关注你微信了!
[***.104.42.241]2024年09月13日 01时08分31秒