进程间的五种通信方式
发布日期:2021-07-19 12:30:23 浏览次数:53 分类:技术文章

本文共 16028 字,大约阅读时间需要 53 分钟。

进程间通信(IPC,InterProcess Communication)是指在不同进程之间传播或交换信息。

IPC的方式通常有管道(包括无名管道和命名管道)、消息队列信号量共享存储SocketStreams等。其中 Socket和Streams支持不同主机上的两个进程IPC。

以Linux中的C语言编程为例。

一、管道

管道,通常指无名管道,是 UNIX 系统IPC最古老的形式。

1、特点:

(1)它是半双工的(即数据只能在一个方向上流动),具有固定的读端和写端。

(2)它只能用于具有亲缘关系的进程之间的通信(也是父子进程或者兄弟进程之间)。

(3)它可以看成是一种特殊的文件,对于它的读写也可以使用普通的read、write 等函数。但是它不是普通的文件,并不属于其他任何文件系统,并且只存在于内存中。

2、原型

#include 
int pipe(int fd[2]); // 返回值:若成功返回0,失败返回-1

当一个管道建立时,它会创建两个文件描述符:fd[0]为读而打开,fd[1]为写而打开。如下图:

在这里插入图片描述
要关闭管道只需将这两个文件描述符关闭即可。

单个进程中的管道几乎没有任何用处。所以,通常调用 pipe 的进程接着调用 fork,这样就创建了父进程与子进程之间的 IPC 通道。

若要数据流从父进程流向子进程,则关闭父进程的读端(fd[0])与子进程的写端(fd[1]);反之,则可以使数据流从子进程流向父进程。

#include
#include
int main(){
int fd[2]; // 两个文件描述符 pid_t pid; char buff[20]; if(pipe(fd) < 0) // 创建管道 printf("Create Pipe Error!\n"); if((pid = fork()) < 0) // 创建子进程 printf("Fork Error!\n"); else if(pid > 0) // 父进程 {
close(fd[0]); // 关闭读端 write(fd[1], "hello world\n", 12); } else {
close(fd[1]); // 关闭写端 read(fd[0], buff, 20); printf("%s", buff); } return 0;}

二、FIFO

FIFO,也称为命名管道,它是一种文件类型

1、特点

(1)FIFO可以在无关的进程之间交换数据,与无名管道不同。

(2)FIFO有路径名与之相关联,它以一种特殊设备文件形式存在于文件系统中。

2、原型

#include 
// 返回值:成功返回0,出错返回-1int mkfifo(const char *pathname, mode_t mode);

其中的 mode 参数与open函数中的 mode 相同。一旦创建了一个 FIFO,就可以用一般的文件I/O函数操作它。

当 open 一个FIFO时,是否设置非阻塞标志(O_NONBLOCK)的区别:

(1)若没有指定O_NONBLOCK(默认),只读 open 要阻塞到某个其他进程为写而打开此 FIFO。类似的,只写 open 要阻塞到某个其他进程为读而打开它。

(2)若指定了O_NONBLOCK,则只读 open 立即返回。而只写 open 将出错返回 -1 如果没有进程已经为读而打开该 FIFO,其errno置ENXIO。

write_fifo.c

#include
#include
// exit#include
// O_WRONLY#include
#include
// timeint main(){
int fd; int n, i; char buf[1024]; time_t tp; printf("I am %d process.\n", getpid()); // 说明进程ID if((fd = open("fifo1", O_WRONLY)) < 0) // 以写打开一个FIFO {
perror("Open FIFO Failed"); exit(1); } for(i=0; i<10; ++i) {
time(&tp); // 取系统当前时间 n=sprintf(buf,"Process %d's time is %s",getpid(),ctime(&tp)); printf("Send message: %s", buf); // 打印 if(write(fd, buf, n+1) < 0) // 写入到FIFO中 {
perror("Write FIFO Failed"); close(fd); exit(1); } sleep(1); // 休眠1秒 } close(fd); // 关闭FIFO文件 return 0;}

read_fifo.c

#include
#include
#include
#include
#include
int main(){
int fd; int len; char buf[1024]; if(mkfifo("fifo1", 0666) < 0 && errno!=EEXIST) // 创建FIFO管道 perror("Create FIFO Failed"); if((fd = open("fifo1", O_RDONLY)) < 0) // 以读打开FIFO {
perror("Open FIFO Failed"); exit(1); } while((len = read(fd, buf, 1024)) > 0) // 读取FIFO管道 printf("Read message: %s", buf); close(fd); // 关闭FIFO文件 return 0;}

上述例子可以扩展成 客户进程—服务器进程 通信的实例,write_fifo的作用类似于客户端,可以打开多个客户端向一个服务器发送请求信息,read_fifo类似于服务器,它适时监控着FIFO的读端,当有数据时,读出并进行处理,但是有一个关键的问题是,每一个客户端必须预先知道服务器提供的FIFO接口,下图显示了这种安排:

在这里插入图片描述

三、消息队列

消息队列,是消息的链接表,存放在内核中。一个消息队列由一个标识符(即队列ID)来标识。

1、特点

(1)消息队列是面向记录的,其中的消息具有特定的格式以及特定的优先级。

(2)消息队列独立于发送与接收进程。进程终止时,消息队列及其内容并不会被删除。

(3)消息队列可以实现消息的随机查询,消息不一定要以先进先出的次序读取,也可以按消息的类型读取。

2、原型

#include 
// 创建或打开消息队列:成功返回队列ID,失败返回-1int msgget(key_t key, int flag);// 添加消息:成功返回0,失败返回-1int msgsnd(int msqid, const void *ptr, size_t size, int flag);// 读取消息:成功返回消息数据的长度,失败返回-1int msgrcv(int msqid, void *ptr, size_t size, long type,int flag);// 控制消息队列:成功返回0,失败返回-1int msgctl(int msqid, int cmd, struct msqid_ds *buf);

在以下两种情况下,msgget将创建一个新的消息队列:

(1)如果没有与键值key相对应的消息队列,并且flag中包含了IPC_CREAT标志位。

(2)key参数为IPC_PRIVATE。

函数msgrcv在读取消息队列时,type参数有下面几种情况:

(1)type == 0,返回队列中的第一个消息;

(2)type > 0,返回队列中消息类型为 type 的第一个消息;
(3)type < 0,返回队列中消息类型值小于或等于 type 绝对值的消息,如果有多个,则取类型值最小的消息。

可以看出,type值非 0 时用于以非先进先出次序读消息。也可以把 type 看做优先级的权值。

msg_server.c

#include 
#include
#include
// 用于创建一个唯一的key#define MSG_FILE "/etc/passwd"// 消息结构struct msg_form {
long mtype; char mtext[256];};int main(){
int msqid; key_t key; struct msg_form msg; // 获取key值 if((key = ftok(MSG_FILE,'z')) < 0) {
perror("ftok error"); exit(1); } // 打印key值 printf("Message Queue - Server key is: %d.\n", key); // 创建消息队列 if ((msqid = msgget(key, IPC_CREAT|0777)) == -1) {
perror("msgget error"); exit(1); } // 打印消息队列ID及进程ID printf("My msqid is: %d.\n", msqid); printf("My pid is: %d.\n", getpid()); // 循环读取消息 for(;;) {
msgrcv(msqid, &msg, 256, 888, 0);// 返回类型为888的第一个消息 printf("Server: receive msg.mtext is: %s.\n", msg.mtext); printf("Server: receive msg.mtype is: %d.\n", msg.mtype); msg.mtype = 999; // 客户端接收的消息类型 sprintf(msg.mtext, "hello, I'm server %d", getpid()); msgsnd(msqid, &msg, sizeof(msg.mtext), 0); } return 0;}

msg_client.c

#include 
#include
#include
// 用于创建一个唯一的key#define MSG_FILE "/etc/passwd"// 消息结构struct msg_form {
long mtype; char mtext[256];};int main(){
int msqid; key_t key; struct msg_form msg; // 获取key值 if ((key = ftok(MSG_FILE, 'z')) < 0) {
perror("ftok error"); exit(1); } // 打印key值 printf("Message Queue - Client key is: %d.\n", key); // 打开消息队列 if ((msqid = msgget(key, IPC_CREAT|0777)) == -1) {
perror("msgget error"); exit(1); } // 打印消息队列ID及进程ID printf("My msqid is: %d.\n", msqid); printf("My pid is: %d.\n", getpid()); // 添加消息,类型为888 msg.mtype = 888; sprintf(msg.mtext, "hello, I'm client %d", getpid()); msgsnd(msqid, &msg, sizeof(msg.mtext), 0); // 读取类型为777的消息 msgrcv(msqid, &msg, 256, 999, 0); printf("Client: receive msg.mtext is: %s.\n", msg.mtext); printf("Client: receive msg.mtype is: %d.\n", msg.mtype); return 0;}

四、信号量

信号量(semaphore)与已经介绍过的 IPC 结构不同,它是一个计数器。信号量用于实现进程间的互斥与同步,而不是用于存储进程间通信数据。

1、特点

(1)信号量用于进程间同步,若要在进程间传递数据需要结合共享内存。

(2)信号量基于操作系统的 PV 操作,程序对信号量的操作都是原子操作。

(3)每次对信号量的 PV 操作不仅限于对信号量值加 1 或减 1,而且可以加减任意正整数。

(4)支持信号量组。

2、原型

最简单的信号量是只能取 0 和 1 的变量,这也是信号量最常见的一种形式,叫做二值信号量(Binary Semaphore)。而可以取多个正整数的信号量被称为通用信号量。

Linux 下的信号量函数都是在通用的信号量数组上进行操作,而不是在一个单一的二值信号量上进行操作。

#include 
// 创建或获取一个信号量组:若成功返回信号量集ID,失败返回-1int semget(key_t key, int num_sems, int sem_flags);// 对信号量组进行操作,改变信号量的值:成功返回0,失败返回-1int semop(int semid, struct sembuf semoparray[], size_t numops);// 控制信号量的相关信息int semctl(int semid, int sem_num, int cmd, ...);

当semget创建新的信号量集合时,必须指定集合中信号量的个数(即num_sems),通常为1; 如果是引用一个现有的集合,则将num_sems指定为 0 。

在semop函数中,sembuf结构的定义如下:

struct sembuf{
short sem_num; // 信号量组中对应的序号,0~sem_nums-1 short sem_op; // 信号量值在一次操作中的改变量 short sem_flg; // IPC_NOWAIT, SEM_UNDO}

其中 sem_op 是一次操作中的信号量的改变量:

若sem_op > 0,表示进程释放相应的资源数,将 sem_op 的值加到信号量的值上。如果有进程正在休眠等待此信号量,则换行它们。

若sem_op < 0,请求 sem_op 的绝对值的资源。

如果相应的资源数可以满足请求,则将该信号量的值减去sem_op的绝对值,函数成功返回。

当相应的资源数不能满足请求时,这个操作与sem_flg有关。
sem_flg 指定IPC_NOWAIT,则semop函数出错返回EAGAIN。
sem_flg 没有指定IPC_NOWAIT,则将该信号量的semncnt值加1,然后进程挂起直到下述情况发生:
当相应的资源数可以满足请求,此信号量的semncnt值减1,该信号量的值减去sem_op的绝对值。成功返回;
此信号量被删除,函数smeop出错返回EIDRM;
进程捕捉到信号,并从信号处理函数返回,此情况下将此信号量的semncnt值减1,函数semop出错返回EINTR
若sem_op == 0,进程阻塞直到信号量的相应值为0:

当信号量已经为0,函数立即返回。

如果信号量的值不为0,则依据sem_flg决定函数动作:
sem_flg指定IPC_NOWAIT,则出错返回EAGAIN。
sem_flg没有指定IPC_NOWAIT,则将该信号量的semncnt值加1,然后进程挂起直到下述情况发生:
信号量值为0,将信号量的semzcnt的值减1,函数semop成功返回;
此信号量被删除,函数smeop出错返回EIDRM;
进程捕捉到信号,并从信号处理函数返回,在此情况将此信号量的semncnt值减1,函数semop出错返回EINTR
在semctl函数中的命令有多种,这里就说两个常用的:

SETVAL:用于初始化信号量为一个已知的值。所需要的值作为联合semun的val成员来传递。在信号量第一次使用之前需要设置信号量。

IPC_RMID:删除一个信号量集合。如果不删除信号量,它将继续在系统中存在,即使程序已经退出,它可能在你下次运行此程序时引发问题,而且信号量是一种有限的资源。

#include
#include
#include
// 联合体,用于semctl初始化union semun{
int val; /*for SETVAL*/ struct semid_ds *buf; unsigned short *array;};// 初始化信号量int init_sem(int sem_id, int value){
union semun tmp; tmp.val = value; if(semctl(sem_id, 0, SETVAL, tmp) == -1) {
perror("Init Semaphore Error"); return -1; } return 0;}// P操作:// 若信号量值为1,获取资源并将信号量值-1// 若信号量值为0,进程挂起等待int sem_p(int sem_id){
struct sembuf sbuf; sbuf.sem_num = 0; /*序号*/ sbuf.sem_op = -1; /*P操作*/ sbuf.sem_flg = SEM_UNDO; if(semop(sem_id, &sbuf, 1) == -1) {
perror("P operation Error"); return -1; } return 0;}// V操作:// 释放资源并将信号量值+1// 如果有进程正在挂起等待,则唤醒它们int sem_v(int sem_id){
struct sembuf sbuf; sbuf.sem_num = 0; /*序号*/ sbuf.sem_op = 1; /*V操作*/ sbuf.sem_flg = SEM_UNDO; if(semop(sem_id, &sbuf, 1) == -1) {
perror("V operation Error"); return -1; } return 0;}// 删除信号量集int del_sem(int sem_id){
union semun tmp; if(semctl(sem_id, 0, IPC_RMID, tmp) == -1) {
perror("Delete Semaphore Error"); return -1; } return 0;}int main(){
int sem_id; // 信号量集ID key_t key; pid_t pid; // 获取key值 if((key = ftok(".", 'z')) < 0) {
perror("ftok error"); exit(1); } // 创建信号量集,其中只有一个信号量 if((sem_id = semget(key, 1, IPC_CREAT|0666)) == -1) {
perror("semget error"); exit(1); } // 初始化:初值设为0资源被占用 init_sem(sem_id, 0); if((pid = fork()) == -1) perror("Fork Error"); else if(pid == 0) /*子进程*/ {
sleep(2); printf("Process child: pid=%d\n", getpid()); sem_v(sem_id); /*释放资源*/ } else /*父进程*/ {
sem_p(sem_id); /*等待资源*/ printf("Process father: pid=%d\n", getpid()); sem_v(sem_id); /*释放资源*/ del_sem(sem_id); /*删除信号量集*/ } return 0;}

以上是system V的,下面介绍一个POSIX的信号量同步方法,

主要用到的函数:

int sem_init(sem_t *sem, int pshared, unsigned int value);,其中sem是要初始化的信号量,pshared表示此信号量是在进程间共享还是线程间共享,value是信号量的初始值。

int sem_destroy(sem_t *sem);,其中sem是要销毁的信号量。只有用sem_init初始化的信号量才能用sem_destroy销毁。
int sem_wait(sem_t *sem);等待信号量,如果信号量的值大于0,将信号量的值减1,立即返回。如果信号量的值为0,则线程阻塞。相当于P操作。成功返回0,失败返回-1。
int sem_post(sem_t *sem); 释放信号量,让信号量的值加1。相当于V操作。

这种方法更容易理解,建议使用这种方法

POSIX 在无竞争条件下,不需要陷入内核,其实现是非常轻量级的; System V 则不同,无论有无竞争都要执行系统调用,因此性能落了下风。

总体来说,System V IPC存在时间比较老,许多系统都支持,但是接口复杂,并且可能各平台上实现略有区别

五、共享内存

共享内存(Shared Memory),指两个或多个进程共享一个给定的存储区。

1、特点

(1)共享内存是最快的一种 IPC,因为进程是直接对内存进行存取。

(2)因为多个进程可以同时操作,所以需要进行同步。

(3)信号量+共享内存通常结合在一起使用,信号量用来同步对共享内存的访问。

2、原型

#include 
// 创建或获取一个共享内存:成功返回共享内存ID,失败返回-1int shmget(key_t key, size_t size, int flag);// 连接共享内存到当前进程的地址空间:成功返回指向共享内存的指针,失败返回-1void *shmat(int shm_id, const void *addr, int flag);// 断开与共享内存的连接:成功返回0,失败返回-1int shmdt(void *addr);// 控制共享内存的相关信息:成功返回0,失败返回-1int shmctl(int shm_id, int cmd, struct shmid_ds *buf);

当用shmget函数创建一段共享内存时,必须指定其 size;而如果引用一个已存在的共享内存,则将 size 指定为0 。

当一段共享内存被创建以后,它并不能被任何进程访问。必须使用shmat函数连接该共享内存到当前进程的地址空间,连接成功后把共享内存区对象映射到调用进程的地址空间,随后可像本地空间一样访问。

shmdt函数是用来断开shmat建立的连接的。注意,这并不是从系统中删除该共享内存,只是当前进程不能再访问该共享内存而已。

shmctl函数可以对共享内存执行多种操作,根据参数 cmd 执行相应的操作。常用的是IPC_RMID(从系统中删除该共享内存)。

下面这个例子,使用了【共享内存+信号量+消息队列】的组合来实现服务器进程与客户进程间的通信。

共享内存用来传递数据;

信号量用来同步;
消息队列用来 在客户端修改了共享内存后 通知服务器读取。

server.c

#include
#include
#include
// shared memory#include
// semaphore#include
// message queue#include
// memcpy// 消息队列结构struct msg_form { long mtype; char mtext;};// 联合体,用于semctl初始化union semun{ int val; /*for SETVAL*/ struct semid_ds *buf; unsigned short *array;};// 初始化信号量int init_sem(int sem_id, int value){ union semun tmp; tmp.val = value; if(semctl(sem_id, 0, SETVAL, tmp) == -1) { perror("Init Semaphore Error"); return -1; } return 0;}// P操作:// 若信号量值为1,获取资源并将信号量值-1// 若信号量值为0,进程挂起等待int sem_p(int sem_id){ struct sembuf sbuf; sbuf.sem_num = 0; /*序号*/ sbuf.sem_op = -1; /*P操作*/ sbuf.sem_flg = SEM_UNDO; if(semop(sem_id, &sbuf, 1) == -1) { perror("P operation Error"); return -1; } return 0;}// V操作:// 释放资源并将信号量值+1// 如果有进程正在挂起等待,则唤醒它们int sem_v(int sem_id){ struct sembuf sbuf; sbuf.sem_num = 0; /*序号*/ sbuf.sem_op = 1; /*V操作*/ sbuf.sem_flg = SEM_UNDO; if(semop(sem_id, &sbuf, 1) == -1) { perror("V operation Error"); return -1; } return 0;}// 删除信号量集int del_sem(int sem_id){ union semun tmp; if(semctl(sem_id, 0, IPC_RMID, tmp) == -1) { perror("Delete Semaphore Error"); return -1; } return 0;}// 创建一个信号量集int creat_sem(key_t key){ int sem_id; if((sem_id = semget(key, 1, IPC_CREAT|0666)) == -1) { perror("semget error"); exit(-1); } init_sem(sem_id, 1); /*初值设为1资源未占用*/ return sem_id;}int main(){ key_t key; int shmid, semid, msqid; char *shm; char data[] = "this is server"; struct shmid_ds buf1; /*用于删除共享内存*/ struct msqid_ds buf2; /*用于删除消息队列*/ struct msg_form msg; /*消息队列用于通知对方更新了共享内存*/ // 获取key值 if((key = ftok(".", 'z')) < 0) { perror("ftok error"); exit(1); } // 创建共享内存 if((shmid = shmget(key, 1024, IPC_CREAT|0666)) == -1) { perror("Create Shared Memory Error"); exit(1); } // 连接共享内存 shm = (char*)shmat(shmid, 0, 0); if((int)shm == -1) { perror("Attach Shared Memory Error"); exit(1); } // 创建消息队列 if ((msqid = msgget(key, IPC_CREAT|0777)) == -1) { perror("msgget error"); exit(1); } // 创建信号量 semid = creat_sem(key); // 读数据 while(1) { msgrcv(msqid, &msg, 1, 888, 0); /*读取类型为888的消息*/ if(msg.mtext == 'q') /*quit - 跳出循环*/ break; if(msg.mtext == 'r') /*read - 读共享内存*/ { sem_p(semid); printf("%s\n",shm); sem_v(semid); } } // 断开连接 shmdt(shm); /*删除共享内存、消息队列、信号量*/ shmctl(shmid, IPC_RMID, &buf1); msgctl(msqid, IPC_RMID, &buf2); del_sem(semid); return 0;}

client.c

#include
#include
#include
// shared memory#include
// semaphore#include
// message queue#include
// memcpy// 消息队列结构struct msg_form { long mtype; char mtext;};// 联合体,用于semctl初始化union semun{ int val; /*for SETVAL*/ struct semid_ds *buf; unsigned short *array;};// P操作:// 若信号量值为1,获取资源并将信号量值-1// 若信号量值为0,进程挂起等待int sem_p(int sem_id){ struct sembuf sbuf; sbuf.sem_num = 0; /*序号*/ sbuf.sem_op = -1; /*P操作*/ sbuf.sem_flg = SEM_UNDO; if(semop(sem_id, &sbuf, 1) == -1) { perror("P operation Error"); return -1; } return 0;}// V操作:// 释放资源并将信号量值+1// 如果有进程正在挂起等待,则唤醒它们int sem_v(int sem_id){ struct sembuf sbuf; sbuf.sem_num = 0; /*序号*/ sbuf.sem_op = 1; /*V操作*/ sbuf.sem_flg = SEM_UNDO; if(semop(sem_id, &sbuf, 1) == -1) { perror("V operation Error"); return -1; } return 0;}int main(){ key_t key; int shmid, semid, msqid; char *shm; struct msg_form msg; int flag = 1; /*while循环条件*/ // 获取key值 if((key = ftok(".", 'z')) < 0) { perror("ftok error"); exit(1); } // 获取共享内存 if((shmid = shmget(key, 1024, 0)) == -1) { perror("shmget error"); exit(1); } // 连接共享内存 shm = (char*)shmat(shmid, 0, 0); if((int)shm == -1) { perror("Attach Shared Memory Error"); exit(1); } // 创建消息队列 if ((msqid = msgget(key, 0)) == -1) { perror("msgget error"); exit(1); } // 获取信号量 if((semid = semget(key, 0, 0)) == -1) { perror("semget error"); exit(1); } // 写数据 printf("***************************************\n"); printf("* IPC *\n"); printf("* Input r to send data to server. *\n"); printf("* Input q to quit. *\n"); printf("***************************************\n"); while(flag) { char c; printf("Please input command: "); scanf("%c", &c); switch(c) { case 'r': printf("Data to send: "); sem_p(semid); /*访问资源*/ scanf("%s", shm); sem_v(semid); /*释放资源*/ /*清空标准输入缓冲区*/ while((c=getchar())!='\n' && c!=EOF); msg.mtype = 888; msg.mtext = 'r'; /*发送消息通知服务器读数据*/ msgsnd(msqid, &msg, sizeof(msg.mtext), 0); break; case 'q': msg.mtype = 888; msg.mtext = 'q'; msgsnd(msqid, &msg, sizeof(msg.mtext), 0); flag = 0; break; default: printf("Wrong input!\n"); /*清空标准输入缓冲区*/ while((c=getchar())!='\n' && c!=EOF); } } // 断开连接 shmdt(shm); return 0;}

注意:当scanf()输入字符或字符串时,缓冲区中遗留下了\n,所以每次输入操作后都需要清空标准输入的缓冲区。但是由于 gcc 编译器不支持fflush(stdin)(它只是标准C的扩展),所以我们使用了替代方案:

while((c=getchar())!='\n' && c!=EOF);

五种通讯方式总结

1.管道:速度慢,容量有限,只有父子进程能通讯

2.FIFO:任何进程间都能通讯,但速度慢

3.消息队列:容量受到系统限制,且要注意第一次读的时候,要考虑上一次没有读完数据的问题

4.信号量:不能传递复杂消息,只能用来同步

5.共享内存区:能够很容易控制容量,速度快,但要保持同步,比如一个进程在写的时候,另一个进程要注意读写的问题,相当于线程中的线程安全,当然,共享内存区同样可以用作线程间通讯,不过没这个必要,线程间本来就已经共享了同一进程内的一块内存

转载地址:https://blog.csdn.net/jdsnpgxj/article/details/110185832 如侵犯您的版权,请留言回复原文章的地址,我们会给您删除此文章,给您带来不便请您谅解!

上一篇:Ubuntu输入正确密码后无法登陆桌面仍然跳转输入登陆界面的解决方法
下一篇:网络编程socket

发表评论

最新留言

感谢大佬
[***.8.128.20]2024年03月19日 06时02分08秒

关于作者

    喝酒易醉,品茶养心,人生如梦,品茶悟道,何以解忧?唯有杜康!
-- 愿君每日到此一游!

推荐文章